DOI QR코드

DOI QR Code

Development of Smart Clothing Prototype for Electrocardiogram Measurement Using Screen Printing Technology

스크린 프린팅 기술을 적용한 심전도 측정용 스마트 의류 프로토타입 개발

  • Hee Jin, Kim (Department of Clothing and Textiles, Gyeongsang National University) ;
  • Taehwan, Lim (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Dae Young, Lim (Material and Component Convergence R&D, Korea Institute of Industrial Technology) ;
  • Sohee, Lee (Department of Clothing and Textiles, Gyeongsang National University)
  • 김희진 (경상국립대학교 의류학과) ;
  • 임태환 (한국생산기술연구원 섬유연구부문) ;
  • 임대영 (한국생산기술연구원 소재부품융합연구부문) ;
  • 이소희 (경상국립대학교 의류학과)
  • Received : 2022.10.31
  • Accepted : 2022.12.09
  • Published : 2022.12.31

Abstract

Ambulatory and real-time electrocardiography (ECG) enable the modified monitoring of cardiovascular diseases and more precise patient condition diagnosis. Although the Holter monitor is widely used to record cardiograms due to its wireless nature, an ideal ECG monitoring system must be lightweight, soft, and accessibility without discomfort. Therefore, smart electronic clothing including conductive electrodes and circuits is an ideal platform to monitor ECG for addressing the suggested requirements. Accordingly, in this study, we have developed an ECG monitoring system on conventional textiles via screen printing, which is ideal for readily fabricating the desired conductive patterns onto the fabric. An affordable silver paste was used to prepare an electronic surface on the fabric, and this fabric was integrated into daily clothing for accessibility. We demonstrated that the screen-printed Ag paste showed lower electrical resistance than conventional circuits. Furthermore, the printed circuits exhibited electrical stretchability when elongated completely. Additionally, the electrical properties of the circuits displayed little difference with 500x stretching deformation, which restored completely after 24 h. The washing durability results showed that the screen-printed circuits were reusable, implying affordable and sustainable technologies. Lastly, the ECG monitoring performance of the smart textile prototype (Ag paste printed fabric integrated daily clothing) was compared with that of traditional wet-type Ag/AgCl electrodes. The result demonstrated that the smart textile prototype could record higher quality ECG signals than the conventional electrode. Consequently, this study opens the possibility of comfortable, affordable, and wearable physiologic signal monitoring system.

Keywords

Acknowledgement

본 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원(No. NRF-2021R1I1A3057957)및 한국생산기술연구원 기관주요사업과 경기도기술 개발사업 "지능형 전자섬유기반 스마트텍스트로닉스 개발(KITECH JA-21-0001/KITECH IZ-21-0001)"의 지원을 받아 수행된 기초연구사업임.

References

  1. Y. T. Tsukada, M. Tokita, H. Murata, Y. Hirasawa, K. Yodogawa, Y. Iwasaki, K. Asai, W. Shimizu, N. Kasai, H. Nakashima, and S. Tsukada, "Validation of Wearable Textile Electrodes for ECG Monitoring", Heart and Vessels, 2019, 34, 1203-1211. https://doi.org/10.1007/s00380-019-01347-8
  2. C. Lou, R. Li, Z. Li, T. Liang, Z. Wei, M. Run, and X. Liu, "Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring", Sensors, 2016, 16, 1833.
  3. A. Achilli, A Bonfiglio, and D. Pani, "Design and Characterization of Screen-printed Textile Electrodes for ECG Monitoring", IEEE Sensors J., 2018, 18, 4097-4107. https://doi.org/10.1109/jsen.2018.2819202
  4. S. Ramasamy and A. Balan, "Wearable Sensors for ECG Measurement: A Review", Sensor Review, 2018, 38, 412-419. https://doi.org/10.1108/sr-06-2017-0110
  5. D. W. Ko, G. T. Lee, C. Lee, C. H. Im, and K. Y. Jung, "Development of an Active Dry EEG Electrode Using an Impedance-Converting Circuit", Ann. Clinical Neurophysiol., 2011, 13, 80-86.
  6. H. Li, X. Chen, L. Cao, C. Zhang, C. Tang, E. Li, and H. Liang, "Textile-based ECG Acquisition System with Capacitively Coupled Electrodes", Transactions of the Institute of Measurement and Control, 2017, 39, 141-148. https://doi.org/10.1177/0142331215600254
  7. G. Goncu-Berk and B. G. Tuna, "The Effect of Sleeve Pattern and Fit on E-Textile Electromyography(EMG) Electrode Performance in Smart Clothing Design", Sensors, 2021, 21, 5621. https://doi.org/10.3390/s21010054
  8. G. Acar, O. Ozturk, A. J. Golparvar, T. A. Elboshra, K. Bohringer, and M. K. Yapici, "Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A Review", Electronics, 2019, 8, 479.
  9. R. L. S. Tan, J. N. Tey, W. T. Kerk, and B. K. Lok, "Roll-to-Roll Manufacturing of Printed Biosensor Electrodes for ECG Monitoring.", 2020, IEEE 22nd Electronics Packaging Technology Conference (EPTC), pp.213-215.
  10. J. M. Abu-Khalaf, L. Al-Ghussain, and A. Al-Halhouli, "Fabrication of Stretchable Circuits on Polydimethylsiloxane (PDMS) Pre-Stretched Substrates by Inkjet Printing Silver Nanoparticles", Materials, 2018, 11, 2377.
  11. A. Angelucci, M. Cavicchioli, I. A. Cintorrino, G. Lauricella, C. Rossi, S. Strati, and A. Aliverti, "Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques", Sensors. 2021, 21, 814. https://doi.org/10.3390/s21010054
  12. S. K. Sinha, Y. Noh, N. Reljin, G. M. Treich, S. Hajeb-Mohammadalipour, Y. Guo, and G. A. Sotzing, "Screen-printed PEDOT:PSS Electrodes on Commercial Finished Textiles for Electrocardiography", ACS Appl. Mater. Interfaces, 2017, 9, 37524-37528. https://doi.org/10.1021/acsami.7b09954
  13. Z. Taleat, A. Khoshroo, and M. Mazloum-Ardakani, "Screen-printed Electrodes for Biosensing: A Review", Microchimica Acta, 2014, 181, 865-891. https://doi.org/10.1007/s00604-014-1181-1
  14. A. Spanu, A. Botter, A. Zedda, G. L. Cerone, A. Bonfiglio, and D. Pani, "Dynamic Surface Electromyography Using Stretchable Screen-printed Textile Electrodes", IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1661-1668. https://doi.org/10.1109/TNSRE.2021.3104972
  15. G. B. Tseghai, D. A. Mengistie, B. Malengier, K. A. Fante, and L. Van Langenhove, "PEDOT: PSS-based Conductive Textiles and Their Applications", Sensors, 2020, 20, 1881.
  16. F. Corsini and G. Griffini," Recent Progress in Encapsulation Strategies to Enhance the Stability of Organometal Halide Perovskite Solar Cells", J. Phys.: Energy, 2020, 2, 031002.
  17. Z. Chen, U. Gengenbach, L. Koker, and M. Mansour, "Approaches for Solution-Processed Encapsulation of Printed Medical Wearable Devices", Current Directions in Biomedical Engineering, 2020, 6, 131-134. https://doi.org/10.1515/cdbme-2020-3034
  18. K. I. Lee, J. S. Jang, and T. R. Lee, "Using the X-ray Image, Augmented Reality Based Electrocardiogram Measurement System Development", J. Digital Convergence, 2016, 14, 331-339.
  19. C. L. Istook, "Composite Elastic and Wire Fabric for Physiological Monitoring Apparel", U.S. Patent, 6,341,504 (2001).
  20. H. J. Huang, X. Ning, M. B. Zhou, T. Sun, X. Wu, and X. P. Zhang, "A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor", ACS Appl. Mater. Interfaces, 2021, 13, 18021-18032. https://doi.org/10.1021/acsami.1c02422
  21. S. Wilson, R. Laing, E. W. Tan, and C. Wilson, "Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance", Sensors, 2020, 20, 4243.
  22. T. Liimatta, E. Halonen, H. Sillanpaa, J. Niittynen, and M. Mantysalo, "Inkjet Printing in Manufacturing of Stretchable Interconnects", Electronic Components and Technology Conference, 2014, pp.151-156.
  23. J. Kim, H. Yang, and G. Cho, "Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode", Fashion & Textile, 2019, 21, 363-369. https://doi.org/10.5805/SFTI.2019.21.3.363
  24. T. Kim, J. Park, J. Sohn, D. Cho, and S. Jeon, "Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes", ACS Nano, 2016, 10, 4770-4778. https://doi.org/10.1021/acsnano.6b01355