Acknowledgement
본 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원(No. NRF-2021R1I1A3057957)및 한국생산기술연구원 기관주요사업과 경기도기술 개발사업 "지능형 전자섬유기반 스마트텍스트로닉스 개발(KITECH JA-21-0001/KITECH IZ-21-0001)"의 지원을 받아 수행된 기초연구사업임.
References
- Y. T. Tsukada, M. Tokita, H. Murata, Y. Hirasawa, K. Yodogawa, Y. Iwasaki, K. Asai, W. Shimizu, N. Kasai, H. Nakashima, and S. Tsukada, "Validation of Wearable Textile Electrodes for ECG Monitoring", Heart and Vessels, 2019, 34, 1203-1211. https://doi.org/10.1007/s00380-019-01347-8
- C. Lou, R. Li, Z. Li, T. Liang, Z. Wei, M. Run, and X. Liu, "Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring", Sensors, 2016, 16, 1833.
- A. Achilli, A Bonfiglio, and D. Pani, "Design and Characterization of Screen-printed Textile Electrodes for ECG Monitoring", IEEE Sensors J., 2018, 18, 4097-4107. https://doi.org/10.1109/jsen.2018.2819202
- S. Ramasamy and A. Balan, "Wearable Sensors for ECG Measurement: A Review", Sensor Review, 2018, 38, 412-419. https://doi.org/10.1108/sr-06-2017-0110
- D. W. Ko, G. T. Lee, C. Lee, C. H. Im, and K. Y. Jung, "Development of an Active Dry EEG Electrode Using an Impedance-Converting Circuit", Ann. Clinical Neurophysiol., 2011, 13, 80-86.
- H. Li, X. Chen, L. Cao, C. Zhang, C. Tang, E. Li, and H. Liang, "Textile-based ECG Acquisition System with Capacitively Coupled Electrodes", Transactions of the Institute of Measurement and Control, 2017, 39, 141-148. https://doi.org/10.1177/0142331215600254
- G. Goncu-Berk and B. G. Tuna, "The Effect of Sleeve Pattern and Fit on E-Textile Electromyography(EMG) Electrode Performance in Smart Clothing Design", Sensors, 2021, 21, 5621. https://doi.org/10.3390/s21010054
- G. Acar, O. Ozturk, A. J. Golparvar, T. A. Elboshra, K. Bohringer, and M. K. Yapici, "Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A Review", Electronics, 2019, 8, 479.
- R. L. S. Tan, J. N. Tey, W. T. Kerk, and B. K. Lok, "Roll-to-Roll Manufacturing of Printed Biosensor Electrodes for ECG Monitoring.", 2020, IEEE 22nd Electronics Packaging Technology Conference (EPTC), pp.213-215.
- J. M. Abu-Khalaf, L. Al-Ghussain, and A. Al-Halhouli, "Fabrication of Stretchable Circuits on Polydimethylsiloxane (PDMS) Pre-Stretched Substrates by Inkjet Printing Silver Nanoparticles", Materials, 2018, 11, 2377.
- A. Angelucci, M. Cavicchioli, I. A. Cintorrino, G. Lauricella, C. Rossi, S. Strati, and A. Aliverti, "Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques", Sensors. 2021, 21, 814. https://doi.org/10.3390/s21010054
- S. K. Sinha, Y. Noh, N. Reljin, G. M. Treich, S. Hajeb-Mohammadalipour, Y. Guo, and G. A. Sotzing, "Screen-printed PEDOT:PSS Electrodes on Commercial Finished Textiles for Electrocardiography", ACS Appl. Mater. Interfaces, 2017, 9, 37524-37528. https://doi.org/10.1021/acsami.7b09954
- Z. Taleat, A. Khoshroo, and M. Mazloum-Ardakani, "Screen-printed Electrodes for Biosensing: A Review", Microchimica Acta, 2014, 181, 865-891. https://doi.org/10.1007/s00604-014-1181-1
- A. Spanu, A. Botter, A. Zedda, G. L. Cerone, A. Bonfiglio, and D. Pani, "Dynamic Surface Electromyography Using Stretchable Screen-printed Textile Electrodes", IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1661-1668. https://doi.org/10.1109/TNSRE.2021.3104972
- G. B. Tseghai, D. A. Mengistie, B. Malengier, K. A. Fante, and L. Van Langenhove, "PEDOT: PSS-based Conductive Textiles and Their Applications", Sensors, 2020, 20, 1881.
- F. Corsini and G. Griffini," Recent Progress in Encapsulation Strategies to Enhance the Stability of Organometal Halide Perovskite Solar Cells", J. Phys.: Energy, 2020, 2, 031002.
- Z. Chen, U. Gengenbach, L. Koker, and M. Mansour, "Approaches for Solution-Processed Encapsulation of Printed Medical Wearable Devices", Current Directions in Biomedical Engineering, 2020, 6, 131-134. https://doi.org/10.1515/cdbme-2020-3034
- K. I. Lee, J. S. Jang, and T. R. Lee, "Using the X-ray Image, Augmented Reality Based Electrocardiogram Measurement System Development", J. Digital Convergence, 2016, 14, 331-339.
- C. L. Istook, "Composite Elastic and Wire Fabric for Physiological Monitoring Apparel", U.S. Patent, 6,341,504 (2001).
- H. J. Huang, X. Ning, M. B. Zhou, T. Sun, X. Wu, and X. P. Zhang, "A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor", ACS Appl. Mater. Interfaces, 2021, 13, 18021-18032. https://doi.org/10.1021/acsami.1c02422
- S. Wilson, R. Laing, E. W. Tan, and C. Wilson, "Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance", Sensors, 2020, 20, 4243.
- T. Liimatta, E. Halonen, H. Sillanpaa, J. Niittynen, and M. Mantysalo, "Inkjet Printing in Manufacturing of Stretchable Interconnects", Electronic Components and Technology Conference, 2014, pp.151-156.
- J. Kim, H. Yang, and G. Cho, "Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode", Fashion & Textile, 2019, 21, 363-369. https://doi.org/10.5805/SFTI.2019.21.3.363
- T. Kim, J. Park, J. Sohn, D. Cho, and S. Jeon, "Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes", ACS Nano, 2016, 10, 4770-4778. https://doi.org/10.1021/acsnano.6b01355