DOI QR코드

DOI QR Code

Rheological Properties and Electro-spinnability of PVDF-based Polymer Blends

PVDF를 포함한 고분자 블렌드의 전기방사와 유변학적 특성 분석

  • Byungwook, Youn (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Yeeun, Song (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Bogyoung, Kim (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Yangyul, Ju (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Yoong Ahm, Kim (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Doojin, Lee (Department of Polymer Science and Engineering, Chonnam National University)
  • 윤병욱 (전남대학교 고분자융합소재공학부) ;
  • 송예은 (전남대학교 고분자융합소재공학부) ;
  • 김보경 (전남대학교 고분자융합소재공학부) ;
  • 주양율 (전남대학교 고분자융합소재공학부) ;
  • 김융암 (전남대학교 고분자융합소재공학부) ;
  • 이두진 (전남대학교 고분자융합소재공학부)
  • Received : 2022.10.04
  • Accepted : 2022.11.13
  • Published : 2022.12.31

Abstract

The electro-spinnability of poly(vinylidne fluoride) (PVDF) solutions vary based on the characteristics of the blended additives and solutions. In this study, we prepared PVDF-based polymer blends comprising of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), thermoplastic polyurethane (TPU), and carbon black nanoparticles. The electro-spinnability of PVDF nanofibers at different polymer concentrations was analyzed using the storage to loss moduli ratio known as the Cole-Cole plot. In addition, the van Gurp-Palmen plot, comprising of the complex modulus and phase angle, was used to describe the polymer network behavior in the PVDF solutions.

Keywords

Acknowledgement

이 논문은 산업통상자원부 World Class Plus Project R&D (G02P13350000401, 나노섬유 기반 IP68 등급 이상, 음향 손실률 1dB 이하인 전자기기 보호용 고성능 방수, 방진, 통음 원단 제조기술 개발)의 지원과 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2022년 산업혁신인재성장지원사업).

References

  1. J. Li, Q. Meng, W. Li, and Z. Zhang, "Influence of Crystalline Properties on the Dielectric and Energy Storage Properties of Poly(vinylidene fluoride)", J. Appl. Polym. Sci., 2011, 122, 1659-1668. https://doi.org/10.1002/app.34020
  2. Q. Li, and Q. Wang, "Ferroelectric Polymers and Their Energy-related Applications", Macromol. Chem. Phys., 2016, 217, 1228-1244. https://doi.org/10.1002/macp.201500503
  3. L. Li, M. Zhang, M. Rong, and W. Ruan, "Studies on the Transformation Process of PVDF from α to β Phase by Stretching", RSC. Adv., 2014, 4, 3938-3943. https://doi.org/10.1039/c3ra45134h
  4. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, "Properties and Applications of the β Phase Poly(vinylidene fluoride)", Polymers, 2018, 10, 228.
  5. H. Wang, X. Yang, Y. Zhao, C. Yan, S. Wang, H. Yang, and J. M. Schultz, "Preparation of Gamma-PVDF with Controlled Orientation and Insight into Phase Transformation", Polymer, 2017, 123, 282-289. https://doi.org/10.1016/j.polymer.2017.07.004
  6. J. D. Pereira, R. C. Camargo, C. S. C. Jose Filho, N. Alves, M. A. Rodriguez-Perez, and C. J. Constantino, "Biomaterials from Blends of Fluoropolymers and Corn Starch-implant and Structural Aspects", Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 36, 226-236. https://doi.org/10.1016/j.msec.2013.12.008
  7. D. Ponnamma, O. Aljarod, H. Parangusan, and M. A. A. AlMaadeed, "Electrospun Nanofibers of PVDF-HFP Composites Containing Magnetic Nickel Ferrite for Energy Harvesting Application", Mater. Chem. Phys., 2020, 239, 122257.
  8. F. Liu, N. A. Hashim, Y. Liu, M. M. Abed, and K. Li, "Progress in the Production and Modification of PVDF Membranes", J. Memb. Sci., 2011, 375, 1-27. https://doi.org/10.1016/j.memsci.2011.03.014
  9. F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, "A Review on Electrospinning for Membrane Fabrication: Challenges and Applications", Desalination, 2015, 356, 15-30. https://doi.org/10.1016/j.desal.2014.09.033
  10. L. Li, M. Chen, Y. Dong, X. Dong, S. Cerneaux, S. Hampshire, J. CaO, L. Zhu, Z. Zhu, and J. Liu, "A Low-cost Aluminamullite Composite Hollow Fiber Ceramic Membrane Fabricated via Phase-inversion and Sintering Method", J. Eur. Ceram. Soc., 2016, 36, 2057-2066. https://doi.org/10.1016/j.jeurceramsoc.2016.02.020
  11. G. C. Rutledge and S. V. Fridrikh, "Formation of Fibers by Electrospinning", Adv. Drug. Deliv. Rev., 2007, 59, 1384-1391. https://doi.org/10.1016/j.addr.2007.04.020
  12. H. Shao, J. Fang, H. Wang, and T. Lin, "Effect of Electrospinning Parameters and Polymer Concentrations on Mechanical-to-electrical Energy Conversion of Randomly-oriented Electrospun Poly(vinylidene fluoride) Nanofiber Mats", RSC. Adv., 2015, 5, 14345-14350. https://doi.org/10.1039/C4RA16360E
  13. Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, and F. Salaun, "Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement", Polymers, 2021, 13, 174.
  14. L. Kong and G. R. Ziegler, "Role of Molecular Entanglements in Starch Fiber Formation by Electrospinning", Biomacromolecules, 2012, 13, 2247-2253. https://doi.org/10.1021/bm300396j
  15. A. M. Sousa, H. K. Souza, J. Uknalis, S. C. Liu, M. P. Goncalves, and L. Liu, "Electrospinning of Agar/PVA Aqueous Solutions and Its Relation with Rheological Properties", Carbohydr. Polym., 2015, 115, 348-355. https://doi.org/10.1016/j.carbpol.2014.08.074
  16. F. Yang, Y. Li, X. Yu, G. Wu, X. Yin, J. Yu, and B. Ding, "Hydrophobic Polyvinylidene Fluoride Fibrous Membranes with Simultaneously Water/windproof and Breathable Performance", RSC. Adv., 2016, 6, 87820-87827. https://doi.org/10.1039/C6RA17565A
  17. H. Gade, S. Nikam, G. G. Chase, and D. H. Reneker, "Effect of Electrospinning Conditions on β-phase and Surface Charge Potential of PVDF Fibers", Polymer, 2021, 228, 123902.
  18. Z. Cui, N. T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y. M. Lee, "Crystalline Polymorphism in Poly(vinylidenefluoride) Membranes", Prog. Polym. Sci., 2015, 51, 94-126. https://doi.org/10.1016/j.progpolymsci.2015.07.007
  19. N. Jia, Q. He, J. Sun, G. Xia, and R. Song, "Crystallization Behavior and Electroactive Properties of PVDF, P (VDF-TrFE) and Their Blend Films", Polym. Test., 2017, 57, 302-306. https://doi.org/10.1016/j.polymertesting.2016.12.003
  20. X. Wang, C. Xiao, H. Liu, Q. Huang, and H. Fu, "Fabrication and Properties of PVDF and PVDF-HFP Microfiltration Membranes", J. Appl. Polym. Sc., 2018, 135, 46711.
  21. J. H. Eun, S. M. Sung, M. S. Kim, B. K. Choi, and J. S. Lee, "Effect of MWCNT Content on the Mechanical and Piezoelectric Properties of PVDF Nanofibers", Mater. Des., 2021, 206, 109785.
  22. M. Li, J. Li, M. Zhou, Y. Xian, Y. Shui, M. Wu, and Y. Yao, "Super-hydrophilic Electrospun PVDF/PVA-blended Nanofiber Membrane for Microfiltration with Ultrahigh Water Flux", J. Appl. Polym. Sci., 2020, 137, 48416.
  23. X. Cai, T. Lei, D. Sun, and L. Lin, "A critical Analysis of the α, β and γ Phases in Poly(vinylidene fluoride) Using FTIR", RSC. Adv., 2017, 7, 15382-15389. https://doi.org/10.1039/C7RA01267E
  24. N. Shehata, R. Nair, R. Boualayan, I. Kandas, A. Masrani, E. Elnabawy, and A. H. Hassanin, "Stretchable Nanofibers of Polyvinylidenefluoride (PVDF)/thermoplastic Polyurethane (TPU) Nanocomposite to Support Piezoelectric Response via Mechanical Elasticity", Sci. Rep., 2022, 12, 1-11. https://doi.org/10.1038/s41598-021-99269-x
  25. N. A. Zakaria, S. Q. Zaliman, C. P. Leo, A. L. Ahmad, B. S. Ooi and P. E. Poh, "3D Imprinted Superhydrophobic Polyvinylidene Fluoride/carbon Balck Membrane for Membrane Distillation with Electrochemical Cleaning Evaluation", J. Environ. Chem. Eng., 2022, 10, 107346.
  26. M. Lu, J, Liao, P. V. Gulgunje, H. Chang, P. J. Arias-Monje, J. Ramachandran, and S. Kumar, "Rheological Behavior and Fiber Spinning of Polyacrylonitrile (PAN)/Carbon Nanotube (CNT) Dispersions at High CNT Loading", Polymer, 2021, 215, 123369.
  27. S. T. Nair, P. P. Vijayan, P. Xavier, S. Bose, S. C. George, and S. Thomas, "Selective Localisation of Multi Walled Carbon Nanotubes in Polypropylene/natural Rubber Blends to Reduce the Percolation Threshold", Compos. Sci. Technol., 2015, 116, 9-17. https://doi.org/10.1016/j.compscitech.2015.04.021