DOI QR코드

DOI QR Code

ANOMALY DETECTION FOR AN ORAL HEALTH CARE APPLICATION USING ONE CLASS YOLOV3

  • Received : 2022.11.18
  • Accepted : 2022.12.07
  • Published : 2022.12.25

Abstract

In this report, we apply an anomaly detection algorithm to a mobile oral health care application. In particular, we have investigated one class YOLOv3 as an anomaly detection model to classify pictures of mouths which will be used as inputs in the following machine learning model. We have achieved outstanding performances by proposing appropriate annotation strategies for our data sets and modifying the loss function. Moreover, the model can classify not only oral and non-oral pictures but also output preprocessed pictures that only contain the area around the lips by using the predicted bounding box. Thus, the model performs prediction and preprocessing simultaneously.

Keywords

Acknowledgement

SK was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2020R1A5A1016126, 2022R1C1C2004559), and DW was supported by Government-funded Technology Commercialization Program through the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (MOTIE) (No. P145600042).

References

  1. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection, IEEE, Proceedings of IEEE Conference on CVPR 2016, Las Vegas, NV 2016
  2. J. Redmon and A. Farhadi YOLO9000: Better, Faster, Stronger, arXiv preprint arXiv:1612.08242 (2016).
  3. J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement, arXiv preprint arXiv:1804.02767 (2018).
  4. A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020).
  5. C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, Scaled-YOLOv4: Scaling cross stage partial network, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online 2021
  6. X. Huang, X. Wang, W. Lv, X. Bai, X. Long, K. Deng, Q. Dang, S. Han, Q. Liu, Xiaoguang Hu, D. Yu, Y. Ma and O. Yoshie, PP-YOLOv2: A Practical Object Detector, arXiv preprint arXiv:2104.10419 (2021).
  7. C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, You Only Learn One Representation: Unified Network for Multiple Tasks, arXiv preprint arXiv:2105.04206 (2021).
  8. Z. Ge, S. Liu, F. Wang, Z. Li and J. Sun, YOLOX: Exceeding YOLO Series in 2021, arXiv preprint arXiv:2107.08430 (2021).
  9. T. -Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, Focal Loss for Dense Object Detection, IEEE, Proceedings of the IEEE ICCV, Venice, Italy 2017
  10. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid and S. Savarese, Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression, IEEE, Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California 2019.
  11. R. Balsys, TensorFlow-2.x-YOLOv3, GitHub repository, https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3
  12. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, Microsoft COCO: Common Objects in Context Lecture Notes in Computer Science, Proceedings of Computer Vision - ECCV 2014, Zurich, Switzerland 2014.