Acknowledgement
SK was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2020R1A5A1016126, 2022R1C1C2004559), and DW was supported by Government-funded Technology Commercialization Program through the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (MOTIE) (No. P145600042).
References
- J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection, IEEE, Proceedings of IEEE Conference on CVPR 2016, Las Vegas, NV 2016
- J. Redmon and A. Farhadi YOLO9000: Better, Faster, Stronger, arXiv preprint arXiv:1612.08242 (2016).
- J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement, arXiv preprint arXiv:1804.02767 (2018).
- A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020).
- C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, Scaled-YOLOv4: Scaling cross stage partial network, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online 2021
- X. Huang, X. Wang, W. Lv, X. Bai, X. Long, K. Deng, Q. Dang, S. Han, Q. Liu, Xiaoguang Hu, D. Yu, Y. Ma and O. Yoshie, PP-YOLOv2: A Practical Object Detector, arXiv preprint arXiv:2104.10419 (2021).
- C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, You Only Learn One Representation: Unified Network for Multiple Tasks, arXiv preprint arXiv:2105.04206 (2021).
- Z. Ge, S. Liu, F. Wang, Z. Li and J. Sun, YOLOX: Exceeding YOLO Series in 2021, arXiv preprint arXiv:2107.08430 (2021).
- T. -Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, Focal Loss for Dense Object Detection, IEEE, Proceedings of the IEEE ICCV, Venice, Italy 2017
- H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid and S. Savarese, Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression, IEEE, Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California 2019.
- R. Balsys, TensorFlow-2.x-YOLOv3, GitHub repository, https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3
- T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, Microsoft COCO: Common Objects in Context Lecture Notes in Computer Science, Proceedings of Computer Vision - ECCV 2014, Zurich, Switzerland 2014.