과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1F1A1A01072414, NRF-2022R1F1A1069217).
참고문헌
- M. Moon. Generalized multiscale hybridizable discontinuous Galerkin (GMsHDG) method for flows in nonlinear porous media, Journal of Computational and Applied Mathematics, 415 (2022), 114440.
- B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM Journal of Numerical Analysis, 47 (2009), 1319-1365. https://doi.org/10.1137/070706616
- D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal of Numerical Analysis, 39 (2002), 1749-1779. https://doi.org/10.1137/S0036142901384162
- R. Kirby, S. Sherwin, and B. Cockburn. To CG or to HDG : A comparative study, Journal of Scientific Computing, 51 (2011), 183-212.
- A. Huerta, A. Angeloski, X. Roca, and J. Peraire. Efficiency of high-order elements for continuous and discontinuous Galerkin methods, International Journal for Numerical Methods in Engineering, 96 (2013), 529-560. https://doi.org/10.1002/nme.4547
- G. Giorgiani, S. Fernandez-Mendez, and A. Huerta. Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems, International Journal for Numerical Methods in Fluids, 72 (2013), 1244-1262. https://doi.org/10.1002/fld.3784
- G. Giorgiani, S. Fernandez-Mendez, and A. Huerta. Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations, Computers & Fluids, 98 (2014), 196-208. https://doi.org/10.1016/j.compfluid.2014.01.011
- S. Yakovlev, D. Moxey, R. M. Kirby, and S. J. Sherwin. To CG or to HDG : A comparative study in 3D, Journal of Scientific Computing, 67 (2016), 192-220. https://doi.org/10.1007/s10915-015-0076-6
- B. Cockburn, W. Qiu, and K. Shi. Conditions for superconvergence of HDG methods for second-order elliptic problems, Mathematics of Computation, 81 (2012), 1327-1353. https://doi.org/10.1090/S0025-5718-2011-02550-0
- B. Cockburn, J. Gopalakrishnan, and F-J. Sayas, A projection-based error analysis of HDG methods, Mathematics of Computation, 79 (2010), 1351-1367. https://doi.org/10.1090/S0025-5718-10-02334-3
- N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, Journal of Computational Physics, 228 (2009), 3232-3254. https://doi.org/10.1016/j.jcp.2009.01.030
- N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, Journal of Computational Physics, 228 (2009), 8841-8855. https://doi.org/10.1016/j.jcp.2009.08.030
- M. Moon, H.K. Jun, and T. Suh, Error estimates on hybridizable discontinuous Galerkin methods for parabolic equations with nonlinear coefficients, Advances in Mathematical Physics, 17 (2017), 1-11. https://doi.org/10.1155/2017/9736818
- M. Stanglmeier, N.C. Nguyen, J. Peraire, and B. Cockburn. An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation, Computer Methods in Applied Mechanics and Engineering, 300 (2016), 748-769. https://doi.org/10.1016/j.cma.2015.12.003
- M, Kronbichler, S. Schoeder, C. Muller, and W.A. Wall. Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation, International Journal for Numerical Methods in Engineering, 106 (2016), 712-739. https://doi.org/10.1002/nme.5137
- N.C. Nguyen, J. Peraire, and B. Cockburn. A hybridizable discontinuous Galerkin method for Stokes flow, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 582-597. https://doi.org/10.1016/j.cma.2009.10.007
- G.N. Gatica and F.A. Sequeira. Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows, Journal of Scientific Computing, 65 (2015), 1270-1308. https://doi.org/10.1007/s10915-015-0008-5
- J. Peraire, N.C. Nguyen, and B. Cockburn. A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations, AIAA, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Florida 2010.
- N.C. Nguyen, J. Peraire, and B. Cockburn. A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010.
- N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 230 (2011), 1147-1170. https://doi.org/10.1016/j.jcp.2010.10.032
- A. Cesmelioglu, B. Cockburn, and W. Qiu. Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Mathematics of Computation, 86 (2017), 1643-1670. https://doi.org/10.1090/mcom/3195
- E.-J. Park. Mixed finite element methods for nonlinear second-order elliptic problems, SIAM Journal on Numerical Analysis, 32 (1995), 865-885. https://doi.org/10.1137/0732040
- D. Kim and E.-J. Park. A priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic equations, SIAM Journal on Numerical Analysis, 48 (2010), 1186-1207. https://doi.org/10.1137/090747002
- Y. Sangita, A. Pani, and E.-J. Park. Superconvergent discontinuous Galerkin methods for nonlinear elliptic equations, Mathematics of Computation, 82 (2013), 1297-1335. https://doi.org/10.1090/S0025-5718-2013-02662-2
- A. Muhammad, E.-J. Park, and D. Shin. Analysis of multiscale mortar mixed approximation of nonlinear elliptic equations, Computers and Mathematics with Applications, 75 (2018), 401-418. https://doi.org/10.1016/j.camwa.2017.09.031
- R. Sevilla and A. Huerta. Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems, Advanced finite element technologies 566, Springer, Cham, 2016.
- M. Moon and Y. H. Lim. Superconvergence of Hybridizable Discontinuous Galerkin method for second-order elliptic equations, Journal of the Korean Society for Industrial and Applied Mathematics, 20 (2016), 295-308. https://doi.org/10.12941/jksiam.2016.20.295
- P. Grisvard. Elliptic problems in nonsmooth domains, Classics in Applied Mathematics 69, Pitman, Boston, MA, 1985.
- P. Knabner. Numerical methods for elliptic and parabolic partial differential equations, Springer, New York, 2003.
- L.C. Evans. Partial differential equations, Graduate Studies on Mathematics 19, American Mathematical Society, 2010.