DOI QR코드

DOI QR Code

Anisotropic Compression Behavior and Phase Transition of Sepiolite Under Moderate Pressure Conditions

천부지권 압력 하 해포석의 비등방적 압축 특성 및 상전이 연구

  • Seohee, Yun (Department of Earth System Sciences, Yonsei University) ;
  • Yongjae, Lee (Department of Earth System Sciences, Yonsei University)
  • 윤서희 (연세대학교 지구시스템과학과) ;
  • 이용재 (연세대학교 지구시스템과학과)
  • Received : 2022.11.09
  • Accepted : 2022.12.21
  • Published : 2022.12.31

Abstract

Pressure-dependent elastic behavior and chemical reaction of natural sepiolite (Mg8Si12O30(OH)4·12H2O) was studied under two different pressure-transmitting medium (PTM) conditions using synchrotron X-ray powder diffraction. Under non pore-penetrating silicone oil PTM, we observed that the b-axis length increases up to ca. 3.6 GPa, marking an anisotropic compression region with negative linear compressibility of βb= -0.0012 GPa-1, which then decreases at 7.7 GPa. Under pore-penetrating water PTM, the anisotropic compression behavior is enhanced with doubled negative linear compressibility of βb= -0.0025 GPa-1 up to 3.2 GPa, where transformation into stevensite is observed upon ex-situ temperature treatment at 280 ℃ as confirmed via XRD and SEM. Derived bulk moduli (K0) and linear compressibilities (β) were compared to other structurally and chemically related minerals.

자연산 해포석(Sepiolite, Mg8Si12O30(OH)4·12H2O)에 대해 물과 실리콘 오일을 압력매개체로 사용하여 압력 증가에 따른 구조적인 변화의 특성을 싱크로트론 X-선 회절 실험으로 연구하였다. 해포석은 실리콘 오일을 압력매개체로 사용한 환경에서는 약 3.6 GPa까지 압력의 증가에 따라 b-축이 비등방적으로 증가하는 음의 선형압축률(-0.0012 GPa-1)을 보이다가 7.7 GPa 에서는 감소하는 변화를 보였다. 물을 압력매개체로 사용한 실험에서는 b-축의 압력에 따른 증가의 정도가 약 두 배로 커지며(-0.0025 GPa-1) 강화된 음의 선형 압축률과 비등방적 압축 특성을 보이다가, 약 3.2 GPa, 280 ℃에서 스멕타이트 계열 광물인 스티븐자이트(Stevensite, Mg3Si4O10(OH)2·4H2O)로 상변화가 일어남이 XRD와 SEM을 통해 확인하였다. 해포석과 스티븐자이트의 체적탄성률(K0)과 선형압축률(β)를 구조적, 화학적으로 유사한 다른 광물의 값들과 비교하여 그 의미를 고찰하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단 리더연구자 사업(2018R1A3B1052042)의 지원으로 수행되었다. 방사광 가속기를 이용한 실험은 포항가속기연구소(PLS-II)와 일본의 Photon Factory (PF)의 빔타임 지원으로 수행되었다. 본 연구를 위해 소중한 시료를 제공한 경북대학교 김영규 교수와 논문의 리뷰를 담당해 준 익명의 심사자 두 분께 감사드린다.

References

  1. Angel, R.J., 2000, Equations of State. Reviews in Mineralogy and Geochemistry, 41, 35-59. https://doi.org/10.2138/rmg.2000.41.2
  2. Brauner, K. and Preisinger, A., 1956, Struktur und entstehung des sepioliths. Tschermaks mineralogische und petrographische Mitteilungen, 6, 120-140. https://doi.org/10.1007/BF01128033
  3. Callen, R.A., 2000, Clays of the palygorskite-sepiolite group: depositional environment, age and distribution, Palygorskite-sepiolite: occurrences, genesis and uses. (eds. Singer, A. and Galan, E.), Elsevier, 1-37.
  4. Carney, L.L. and Meyer, R.L., 1976, A new approach to high temperature drilling fields. In: SPE Annual Fall Technical Conference and Exhibition, SPE-6025-MS.
  5. Chahi, A., Fritz, B., Duplay, J., Weber, F. and Lucas, J., 1997, Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays and Clay Minerals, 45, 378-389. https://doi.org/10.1346/CCMN.1997.0450308
  6. Faust, G.T. and Murata, K.J., 1953, Stevensite, redefined as a member of the montmorillonite group. American Mineralogist: Journal of Earth and Planetary Materials, 38, 973-987.
  7. Garcia-Romero, E. and Suarez, M., 2013, Sepiolite-palygorskite: Textural study and genetic considerations. Applied Clay Science, 86, 129-144.
  8. Guven, N. and Carney, L.L., 1979, The Hydrothermal Transformation of Sepiolite to Stevensite and the Effect of Added Chlorides and Hydroxides. Clays and Clay Minerals, 27, 253-260. https://doi.org/10.1346/CCMN.1979.0270403
  9. Haines, S.H. and van der Pluijm, B.A., 2012, Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. Journal of Structural Geology, 43, 2-32. https://doi.org/10.1016/j.jsg.2012.05.004
  10. Huggett, J.M., 2015, Clay Minerals. Reference Module in Earth Systems and Environmental Sciences. Elsevier, 358-365.
  11. Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447-452. https://doi.org/10.1016/0025-5408(88)90019-0
  12. Mao, H.K., Xu, J. and Bell, P.M., 1986, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  13. Moyano, B., Spikes, K.T., Johansen, T.A. and Mondol, N.H., 2012, Modeling compaction effects on the elastic properties of clay-water composites. Geophysics, 77, D171-D183. https://doi.org/10.1190/geo2011-0426.1
  14. Post, J.E., Bish, D.L. and Heaney, P.J., 2007, Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 91-97. https://doi.org/10.2138/am.2007.2134
  15. Post, J.L. and Crawford, S., 2007, Varied forms of palygorskite and sepiolite from different geologic systems. Applied Clay Science. 36, 232-244.
  16. Prescher, C. and Prakapenka, V.B, 2015, DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223-230. https://doi.org/10.1080/08957959.2015.1059835
  17. Sanchez Roa, C., Faulkner, D.R., Boulton, C., Jimenez Millan, J. and Nieto, F., 2017, How phyllosilicate mineral structure affects fault strength in Mg rich fault systems. Geophysical Research Letters, 44, 5457-5467. https://doi.org/10.1002/2017GL073055
  18. Sanchez-Roa, C., Vidal, O., Jimenez-Millan, J., Nieto, F. and Faulkner, D.R., 2018, Implications of sepiolite dehydration for earthquake nucleation in the Galera Fault Zone: A thermodynamic approach. Applied Geochemistry, 89, 219-228. https://doi.org/10.1016/j.apgeochem.2017.11.013
  19. Toby, B.H, 2001, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213. https://doi.org/10.1107/s0021889801002242
  20. Ueshima, M. and Tazaki, K., 2001, Possible role of microbial polysaccharides in nontronite formation. Clays and Clay Minerals, 49, 292-299. https://doi.org/10.1346/CCMN.2001.0490403
  21. Vasquez, G.F., Morschbacher, M.J., Dos Anjos, C.W.Di., Silva, Y.M.P., Madrucci, V. and Justen, J.C.R., 2019, Petroacoustics and composition of presalt rocks from Santos Basin. Leading Edge, 38, 342-348. https://doi.org/10.1190/tle38050342.1
  22. Yeniyol, M, 2020, Transformation of Magnesite to Sepiolite and Stevensite: Characteristics and Genesis (CAYIRBA I, Konya, Turkey). Clays and Clay Minerals, 68, 347-360. https://doi.org/10.1007/s42860-020-00083-9
  23. Wang, Z., Wang, H. and Cates, M.E., 2001, Effective elastic properties of solid clays. Geophysics, 66, 428-440. https://doi.org/10.1190/1.1444934