References
- A-Tech Instruments Ltd (2020), "A-Tech Instruments Ltd", 2020. http://www.a-tech.ca/.
- ACCES I/O Products (2019), "DAQ-PACK SERIES MULTICHANNEL ANALOG I/O", San Diego. www.accesio.com.
- ASCE/SEI 7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-16.
- Cermak, J.E. (2003), "Wind-tunnel development and trends in applications to civil engineering", J. Wind Eng. Ind. Aerod., 91(3), 355-370. https://doi.org/10.1016/S0167-6105(02)00396-3.
- Chen, X. and Kareem, A. (2005), "Coupled dynamic analysis and equivalent static wind loads on buildings with threedimensional modes", J. Struct. Eng., 131(7), 1071-1082. https://doi.org/10.1061/(asce)0733-9445(2005)131:7(1071)
- Cochran, L.S. and Cermak, J.E. (1992), "Full-and model-scale cladding pressures on the Texas Tech University experimental building", J. Wind Eng. Ind. Aerod., 43(1-3), 1589-1600. https://doi.org/10.1017/CBO9781107415324.004.
- Cluni, F., Gusella, V., Spence, S.M.J. and Bartoli, G. (2011), "Wind action on regular and irregular tall Buildings: Higher order moment statistical analysis by HFFB and SMPSS measurements", J. Wind Eng. Ind. Aerod., 99(6-7), 682-690. https://doi.org/10.1016/j.jweia.2011.01.020.
- Davenport, A.G. (1988), "The response of supertall buildings to wind. second century of the skyscraper", Council on Tall Buildings and the Urban Habitat.
- Ding, F., Kareem, A. and Wan, J. (2019), "Aerodynamic tailoring of structures using computational fluid dynamics", Struct. Eng. Int. 29(1), 26-39. https://doi.org/10.1080/10168664.2018.1522936.
- Dragoiescu, C., Garber, J. and Kumar, K.S. (2006), "A comparison of force balance and pressure integration techniques for predicting wind-Induced responses of tall buildings", Proceedings of the Structures Congress 2006: Structural Engineering and Public Safety, 1-10.
- Duan, M., Wang, J.Q., Wang, X.Z. and Li, P.S. (2014), "Wind tunnel test study of estimation method on peak wind pressure of low-rise buildings", Appl. Mech. Mater., 488, 813-816. https://doi.org/10.4028/www.scientific.net/AMM.488-489.813.
- Dutton, R. and Isyumov, N. (1990), "Reduction of tall building motion by aerodynamic treatments", J. Wind Eng. Ind. Aerod., 36, 739-747. https://doi.org/10.1016/0167-6105(90)90071-J.
- Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2016), "Aerodynamic optimization to reduce wind loads on tall buildings", Proceedings of the Annual Conference - Canadian Society for Civil Engineering. London, Canada.
- Endo, M., Bienkiewicz, B. and Ham, H.J. (2006), "Wind-tunnel investigation of point pressure on TTU test building", J. Wind Eng. Ind. Aerod., 94(7), 553-578. https://doi.org/10.1016/j.jweia.2006.01.019.
- Engineering, Technel (2020), "No Title." 2020. http://technel.com/.
- ESDU. 2010, "Characteristics of atmospheric turbulence near the ground, Part I: Definitions and general information", Engineering Sciences Data Unit, IHS Inc., London, UK, Report No. ESDU 74030.
- Ghazal, T., Chen, J., Aboutabikh, M., Aboshosha, H., Elgamal, S., Sameh, E. and Kouroshnezhad, F. (2020), "Flow-conditioning of a subsonic wind tunnel to model boundary layer flows", Wind Struct., 30(4), 339-366. https://doi.org/10.12989/was.2020.30.4.339.
- Hagos, A., Habte, F., Chowdhury, A.G. and Yeo, D. (2014), "Comparisons of two wind tunnel pressure databases and partial validation against full-scale measurements", J. Struct. Eng., (United States), 140(10), 1-14. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001001.
- Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., Tufo, J.L. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Indu. Aerod., 171, 12-33. https://doi.org/10.1016/j.jweia.2017.09.010.
- Ho, T.C.E., Surry, D. and Morrish, D.P. (2003a), "NIST/TTU cooperative agreement-windstorm mitigation initiative: Wind tunnel experiments on generic low buildings", The Boundary Layer Wind Tunnel Laboratory, University of Western Ontario. https://doi.org/BLWT-SS20-2003. BLWT-SS20-2003
- Ho, T.C.E., Surry, D. and Morrish. D.P. (2003b), "NIST/TTU cooperative agreement-windstorm mitigation tnitiative: Wind tunnel experiments on generic low buildings", The Boundary Layer Wind Tunnel Laboratory, University of Western Ontario.
- Ho, T.C.E., Surry, D. and Nywening, M. (2003), "NIST/TTU cooperative agreement/windstorm mitigation initiative: Further experiments on generic low buildings", London, Canada. https://doi.org/BLWT-SS20-2003.
- Holmes, J.D. (2018), Wind Loading of Structures. CRC press.
- Institution, British Standards (2005), Eurocode 1: Actions on Structures. General Actions: Actions During Execution. BSI.
- Irwin, P.A. (1988), "Pressure model techniques for cladding loads", J. Wind Eng. Ind. Aerod., 29(1-3), 69-78. https://doi.org/10.1016/0167-6105(88)90146-8.
- Irwin, P.A., Denoon, R. and Scott, D. (2019), Wind Tunnel Testing of High-Rise Buildings: An Output of the CTBUH Wind Engineering Working Group. Routledge.
- Kareem, A. (2020), "Emerging frontiers in wind engineering: computing, stochastics, machine learning and beyond", J. Wind Eng. Ind. Aerod., 206, 104320. https://doi.org/10.1016/j.jweia.2020.104320.
- Kim, B., Yuvaraj,N., Tse, K.T., Lee, D.E. and Hu, G. (2021), "Pressure pattern recognition in buildings using an unsupervised machine-learning algorithm", J. Wind Eng. Ind. Aerod., 214, 104629. https://doi.org/10.1016/j.jweia.2021.104629.
- Lin, J.X., Surry, D. and Tieleman, H.W. (1995), "The distribution of pressure near roof corners of flat roof low buildings", J. Wind Eng. Ind. Aerod., 56(2-3), 235-265. https://doi.org/10.1016/0167-6105(94)00089-V.
- Liu, Z., Prevatt, D.O., Aponte-Bermudez, L.D., Gurley, K.R., Reinhold, T.A. and Akins, R.E. (2009), "Field measurement and wind tunnel simulation of hurricane wind loads on a single family dwelling", Eng. Struct., 31(10), 2265-2274. https://doi.org/10.1016/j.engstruct.2009.04.009.
- MATLAB (2021), Version 9.10.0 (R2021a). Natick, Massachusetts: The MathWorks Inc.
- Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6(1-2), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9.
- Mo, Z., Fu, H.Z. and Ho, Y.S. (2018), "Global development and trend of wind tunnel research from 1991 to 2014: A bibliometric analysis", Environ. Sci. Pollution Res., 25(30), 30257-30270. https://doi.org/10.1007/s11356-018-3019-6.
- National Building Code of Canada (2015), Canadian Commission on Building and Fire Codes National Research Council of Canada.
- NXP Semiconductors (2012), "Integrated silicon pressure sensor on-chip signal conditioned, temperature compensated and calibrated SERIES", Time, 2, 1-9.
- Peterka, J.A., Cochran, L.S., Boggs, D.W., Hosoya, N. and Downing, M. (1994), "Simultaneous peak pressure measurements in the wind tunnel", Proceedings of the International Conference on Building Envelope Systems and Technology, Singapore.
- Roberts, S. (2012), Wind Wizard: Alan G. Davenport and the Art of Wind Engineering, Princeton University Press.
- Roney, J.A. and White, B.R. (2006), "Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel", Atmos.Environ., 40(40), 7668-7685. https://doi.org/10.1016/j.atmosenv.2006.08.015.
- Steckley, A., Accardo, M., Gamble, S.L. and Irwin, P.A. (1992), "The use of integrated pressures to determine overall windinduced response", J. Wind Eng. Ind. Aerod., 42(1-3), 1023-1034. https://doi.org/10.1016/0167-6105(92)90108-M.
- Tamura, Y., Kikuchi, H. and Hibi, K. (2000), "Wind load combinations and extreme pressure distributions on low-rise buildings", Wind Struct., 3(4), 279-289. https://doi.org/10.12989/was.2000.3.4.279.
- Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Chul, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
- Tschanz, T, and Davenport, A.G. (1983), "The base balance technique for the determination of dynamic wind loads", J. Wind Eng. Ind. Aerod., 13(1-3), 429-439. https://doi.org/10.1016/0167-6105(83)90162-9.
- Tse, K.T., Hitchcock, P.A. and Kwok, K.C.S. (2008), "A time domain analysis technique for aerodynamic wind tunnel model studies", J. Wind Eng. Ind. Aerod., 5, 1-16. https://doi.org/10.1016/0167-6105(79)90021-7
- Tse, K.T., Hitchcock, P.A. and Kwok, K.C.S. (2009), Mode shape linearization for HFBB analysis of wind-excited complex tall buildings", Eng. Struct., 31(3), 675-685. https://doi.org/10.1016/j.engstruct.2008.11.012.
- Uematsu, Y. and Isyumov, N. (1999), "Wind pressures acting on low-rise buildings", J. Wind Eng. Ind. Aerod., 82(1-3), 1-25. https://doi.org/10.1016/S0167-6105(99)00036-7.
- Wang, X., Li, Q. and Li, J. (2020), "Field monitoring and wind tunnel study of wind effects on roof overhang of a low-rise building", Struct. Control Health Monit., 27(3), 1-25. https://doi.org/10.1002/stc.2484.
- Wardlaw, R.L. and Moss, G.F. (1970), "A standard tall building model for the comparison of simulated natural winds in wind tunnels", Report CC-662 Tech 25.
- Xiao, D., Heaney, C.E., Mottet, L., Fang, F., Lin, W., Navon, I.M., Guo, Y., Matar, O.K., Robins, A.G. and Pain, C.C. (2019), "A reduced order model for turbulent flows in the urban environment using machine learning", Build. Environ., 148, 323-337. https://doi.org/10.1016/j.buildenv.2018.10.035.
- Yeo, D.H. and Chowdhury, A.G. (2013), "Simplified wind flow model for the estimation of aerodynamic effects on small structures", J. Eng. Mech., 139(3), 367-375. https://doi.org/10.1061/(asce)em.1943-7889.0000508.