DOI QR코드

DOI QR Code

A low-cost expandable multi-channel pressure system for wind tunnels

  • Received : 2021.07.27
  • Accepted : 2022.07.13
  • Published : 2022.11.25

Abstract

Over the past few decades, the use of wind tunnels has been increasing as a result of the rapid growth of cities and the urge to build taller and non-typical structures. While the accuracy of a wind tunnel study on a tall building requires several aspects, the precise extraction of wind pressure plays a significant role in a successful pressure test. In this research study, a low-cost expandable synchronous multi-pressure sensing system (SMPSS) was developed and validated at Ryerson University's wind tunnel (RU-WT) using electronically scanning pressure sensors for wind tunnel tests. The pressure system consists of an expandable 128 pressure sensors connected to a compact data acquisition and a host workstation. The developed system was examined and validated to be used for tall buildings by comparing mean, root mean square (RMS), and power spectral density (PSD) for the base moments coefficients with the available data from the literature. In addition, the system was examined for evaluating the mean and RMS pressure distribution on a standard low-rise building and were found to be in good agreement with the validation data.

Keywords

References

  1. A-Tech Instruments Ltd (2020), "A-Tech Instruments Ltd", 2020. http://www.a-tech.ca/.
  2. ACCES I/O Products (2019), "DAQ-PACK SERIES MULTICHANNEL ANALOG I/O", San Diego. www.accesio.com.
  3. ASCE/SEI 7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-16.
  4. Cermak, J.E. (2003), "Wind-tunnel development and trends in applications to civil engineering", J. Wind Eng. Ind. Aerod., 91(3), 355-370. https://doi.org/10.1016/S0167-6105(02)00396-3.
  5. Chen, X. and Kareem, A. (2005), "Coupled dynamic analysis and equivalent static wind loads on buildings with threedimensional modes", J. Struct. Eng., 131(7), 1071-1082. https://doi.org/10.1061/(asce)0733-9445(2005)131:7(1071)
  6. Cochran, L.S. and Cermak, J.E. (1992), "Full-and model-scale cladding pressures on the Texas Tech University experimental building", J. Wind Eng. Ind. Aerod., 43(1-3), 1589-1600. https://doi.org/10.1017/CBO9781107415324.004.
  7. Cluni, F., Gusella, V., Spence, S.M.J. and Bartoli, G. (2011), "Wind action on regular and irregular tall Buildings: Higher order moment statistical analysis by HFFB and SMPSS measurements", J. Wind Eng. Ind. Aerod., 99(6-7), 682-690. https://doi.org/10.1016/j.jweia.2011.01.020.
  8. Davenport, A.G. (1988), "The response of supertall buildings to wind. second century of the skyscraper", Council on Tall Buildings and the Urban Habitat.
  9. Ding, F., Kareem, A. and Wan, J. (2019), "Aerodynamic tailoring of structures using computational fluid dynamics", Struct. Eng. Int. 29(1), 26-39. https://doi.org/10.1080/10168664.2018.1522936.
  10. Dragoiescu, C., Garber, J. and Kumar, K.S. (2006), "A comparison of force balance and pressure integration techniques for predicting wind-Induced responses of tall buildings", Proceedings of the Structures Congress 2006: Structural Engineering and Public Safety, 1-10.
  11. Duan, M., Wang, J.Q., Wang, X.Z. and Li, P.S. (2014), "Wind tunnel test study of estimation method on peak wind pressure of low-rise buildings", Appl. Mech. Mater., 488, 813-816. https://doi.org/10.4028/www.scientific.net/AMM.488-489.813.
  12. Dutton, R. and Isyumov, N. (1990), "Reduction of tall building motion by aerodynamic treatments", J. Wind Eng. Ind. Aerod., 36, 739-747. https://doi.org/10.1016/0167-6105(90)90071-J.
  13. Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2016), "Aerodynamic optimization to reduce wind loads on tall buildings", Proceedings of the Annual Conference - Canadian Society for Civil Engineering. London, Canada.
  14. Endo, M., Bienkiewicz, B. and Ham, H.J. (2006), "Wind-tunnel investigation of point pressure on TTU test building", J. Wind Eng. Ind. Aerod., 94(7), 553-578. https://doi.org/10.1016/j.jweia.2006.01.019.
  15. Engineering, Technel (2020), "No Title." 2020. http://technel.com/.
  16. ESDU. 2010, "Characteristics of atmospheric turbulence near the ground, Part I: Definitions and general information", Engineering Sciences Data Unit, IHS Inc., London, UK, Report No. ESDU 74030.
  17. Ghazal, T., Chen, J., Aboutabikh, M., Aboshosha, H., Elgamal, S., Sameh, E. and Kouroshnezhad, F. (2020), "Flow-conditioning of a subsonic wind tunnel to model boundary layer flows", Wind Struct., 30(4), 339-366. https://doi.org/10.12989/was.2020.30.4.339.
  18. Hagos, A., Habte, F., Chowdhury, A.G. and Yeo, D. (2014), "Comparisons of two wind tunnel pressure databases and partial validation against full-scale measurements", J. Struct. Eng., (United States), 140(10), 1-14. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001001.
  19. Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., Tufo, J.L. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Indu. Aerod., 171, 12-33. https://doi.org/10.1016/j.jweia.2017.09.010.
  20. Ho, T.C.E., Surry, D. and Morrish, D.P. (2003a), "NIST/TTU cooperative agreement-windstorm mitigation initiative: Wind tunnel experiments on generic low buildings", The Boundary Layer Wind Tunnel Laboratory, University of Western Ontario. https://doi.org/BLWT-SS20-2003. BLWT-SS20-2003
  21. Ho, T.C.E., Surry, D. and Morrish. D.P. (2003b), "NIST/TTU cooperative agreement-windstorm mitigation tnitiative: Wind tunnel experiments on generic low buildings", The Boundary Layer Wind Tunnel Laboratory, University of Western Ontario.
  22. Ho, T.C.E., Surry, D. and Nywening, M. (2003), "NIST/TTU cooperative agreement/windstorm mitigation initiative: Further experiments on generic low buildings", London, Canada. https://doi.org/BLWT-SS20-2003.
  23. Holmes, J.D. (2018), Wind Loading of Structures. CRC press.
  24. Institution, British Standards (2005), Eurocode 1: Actions on Structures. General Actions: Actions During Execution. BSI.
  25. Irwin, P.A. (1988), "Pressure model techniques for cladding loads", J. Wind Eng. Ind. Aerod., 29(1-3), 69-78. https://doi.org/10.1016/0167-6105(88)90146-8.
  26. Irwin, P.A., Denoon, R. and Scott, D. (2019), Wind Tunnel Testing of High-Rise Buildings: An Output of the CTBUH Wind Engineering Working Group. Routledge.
  27. Kareem, A. (2020), "Emerging frontiers in wind engineering: computing, stochastics, machine learning and beyond", J. Wind Eng. Ind. Aerod., 206, 104320. https://doi.org/10.1016/j.jweia.2020.104320.
  28. Kim, B., Yuvaraj,N., Tse, K.T., Lee, D.E. and Hu, G. (2021), "Pressure pattern recognition in buildings using an unsupervised machine-learning algorithm", J. Wind Eng. Ind. Aerod., 214, 104629. https://doi.org/10.1016/j.jweia.2021.104629.
  29. Lin, J.X., Surry, D. and Tieleman, H.W. (1995), "The distribution of pressure near roof corners of flat roof low buildings", J. Wind Eng. Ind. Aerod., 56(2-3), 235-265. https://doi.org/10.1016/0167-6105(94)00089-V.
  30. Liu, Z., Prevatt, D.O., Aponte-Bermudez, L.D., Gurley, K.R., Reinhold, T.A. and Akins, R.E. (2009), "Field measurement and wind tunnel simulation of hurricane wind loads on a single family dwelling", Eng. Struct., 31(10), 2265-2274. https://doi.org/10.1016/j.engstruct.2009.04.009.
  31. MATLAB (2021), Version 9.10.0 (R2021a). Natick, Massachusetts: The MathWorks Inc.
  32. Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6(1-2), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9.
  33. Mo, Z., Fu, H.Z. and Ho, Y.S. (2018), "Global development and trend of wind tunnel research from 1991 to 2014: A bibliometric analysis", Environ. Sci. Pollution Res., 25(30), 30257-30270. https://doi.org/10.1007/s11356-018-3019-6.
  34. National Building Code of Canada (2015), Canadian Commission on Building and Fire Codes National Research Council of Canada.
  35. NXP Semiconductors (2012), "Integrated silicon pressure sensor on-chip signal conditioned, temperature compensated and calibrated SERIES", Time, 2, 1-9.
  36. Peterka, J.A., Cochran, L.S., Boggs, D.W., Hosoya, N. and Downing, M. (1994), "Simultaneous peak pressure measurements in the wind tunnel", Proceedings of the International Conference on Building Envelope Systems and Technology, Singapore.
  37. Roberts, S. (2012), Wind Wizard: Alan G. Davenport and the Art of Wind Engineering, Princeton University Press.
  38. Roney, J.A. and White, B.R. (2006), "Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel", Atmos.Environ., 40(40), 7668-7685. https://doi.org/10.1016/j.atmosenv.2006.08.015.
  39. Steckley, A., Accardo, M., Gamble, S.L. and Irwin, P.A. (1992), "The use of integrated pressures to determine overall windinduced response", J. Wind Eng. Ind. Aerod., 42(1-3), 1023-1034. https://doi.org/10.1016/0167-6105(92)90108-M.
  40. Tamura, Y., Kikuchi, H. and Hibi, K. (2000), "Wind load combinations and extreme pressure distributions on low-rise buildings", Wind Struct., 3(4), 279-289. https://doi.org/10.12989/was.2000.3.4.279.
  41. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Chul, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  42. Tschanz, T, and Davenport, A.G. (1983), "The base balance technique for the determination of dynamic wind loads", J. Wind Eng. Ind. Aerod., 13(1-3), 429-439. https://doi.org/10.1016/0167-6105(83)90162-9.
  43. Tse, K.T., Hitchcock, P.A. and Kwok, K.C.S. (2008), "A time domain analysis technique for aerodynamic wind tunnel model studies", J. Wind Eng. Ind. Aerod., 5, 1-16. https://doi.org/10.1016/0167-6105(79)90021-7
  44. Tse, K.T., Hitchcock, P.A. and Kwok, K.C.S. (2009), Mode shape linearization for HFBB analysis of wind-excited complex tall buildings", Eng. Struct., 31(3), 675-685. https://doi.org/10.1016/j.engstruct.2008.11.012.
  45. Uematsu, Y. and Isyumov, N. (1999), "Wind pressures acting on low-rise buildings", J. Wind Eng. Ind. Aerod., 82(1-3), 1-25. https://doi.org/10.1016/S0167-6105(99)00036-7.
  46. Wang, X., Li, Q. and Li, J. (2020), "Field monitoring and wind tunnel study of wind effects on roof overhang of a low-rise building", Struct. Control Health Monit., 27(3), 1-25. https://doi.org/10.1002/stc.2484.
  47. Wardlaw, R.L. and Moss, G.F. (1970), "A standard tall building model for the comparison of simulated natural winds in wind tunnels", Report CC-662 Tech 25.
  48. Xiao, D., Heaney, C.E., Mottet, L., Fang, F., Lin, W., Navon, I.M., Guo, Y., Matar, O.K., Robins, A.G. and Pain, C.C. (2019), "A reduced order model for turbulent flows in the urban environment using machine learning", Build. Environ., 148, 323-337. https://doi.org/10.1016/j.buildenv.2018.10.035.
  49. Yeo, D.H. and Chowdhury, A.G. (2013), "Simplified wind flow model for the estimation of aerodynamic effects on small structures", J. Eng. Mech., 139(3), 367-375. https://doi.org/10.1061/(asce)em.1943-7889.0000508.