DOI QR코드

DOI QR Code

On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations

  • Hao-Xuan, Ding (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Yi-Wen, Zhang (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin, She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2022.04.27
  • Accepted : 2022.10.28
  • Published : 2022.12.25

Abstract

In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.

Keywords

Acknowledgement

This work is supported by the talent introduction project of Chongqing University (02090011044159), and Fundamental Research Funds for the Central Universities (2022CDJXY-005), and the project of new technology and equipment of intelligent manufacturing (02090025020040).

References

  1. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. http://doi.org/10.1177/1077546320947302.
  2. Alazwari M.A., Daikh A.A. and Eltaher M.A. (2022), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117.
  3. Alnujaie, A., Akba, E.D., Eltaher, M. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://doi.org/10.12989/gae.2021.24.1.091.
  4. Anvari, M., Mohammadimehr, M. and Amiri, A. (2020), "Vibration behavior of a micro cylindrical sandwich panel reinforced by graphene platelet", J. Vib. Control, 26(13-14), 1311-1343. http://doi.org/10.1177/1077546319892730.
  5. Arefi, M., Firouzeh, S., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
  6. Baghbadorani, A.A. and Kiani, Y. (2021), "Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets", Compos. Struct., 276, 114546. http://doi.org/10.1016/j.compstruct.2021.114546.
  7. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Brazil. Soc. Mech. Sci. Eng., 42(1), 1-14. http://doi.org/10.1007/s40430-019-2118-8.
  8. Barati, M.R. and Zenkour, A.M. (2018), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. http://doi.org/10.1080/15376494.2018.1444235.
  9. Chen, S.H. and Cheung, Y.K. (1996), "A modified lindstedt-poincare method for a strongly nonlinear system with quadratic and cubic nonlinearities", Shock Vib., 3(4), 279-285. https://doi.org/10.1155/1996/231241.
  10. Civalek, O. and Avcar, M. (2022). "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 38(Suppl1), 489-521. https://doi.org/10.1007/s00366-020-01168-8.
  11. Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
  12. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11, 3250. https://doi.org/10.3390/app11073250.
  13. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063.
  14. Do, V. and Lee, C.H. (2020), "Static bending and free vibration analysis of multilayered composite cylindrical and spherical panels reinforced with graphene platelets by using isogeometric analysis method", Eng. Struct., 215, 110682. http://doi.org/10.1016/j.engstruct.2020.110682.
  15. Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
  16. Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136, 705. https://doi.org/10.1140/epjp/s13360-021-01682-8.
  17. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136, 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.
  18. Esmaeili, H.R., Kiani, Y. and Beni, Y.T. (2022), "Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports", Acta Mechanica, 233(2), 665-683. http://doi.org/10.1007/s00707-021-03140-z.
  19. Ghandourah, E.E., Daikh, A.A., Alhawsawi, A.M., Fallatah, O.A., Eltaher, M.A. (2022), "Bending and buckling of FG-GRNC laminated plates via Quasi-3D nonlocal strain Gradient theory", Math., 10, 1321 https://doi.org/10.3390/math10081321.
  20. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S. R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
  21. Jafari, P. and Kiani, Y. (2021), "Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model-ScienceDirect", Compos. Struct., 275, 114409. http://doi.org/10.1016/j.compstruct.2021.114409.
  22. Jalaei, M.H. and Civalek, Ӧ. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  23. Jalaei, M.H., Thai, H.T. and Civalek, Ӧ. (2022), "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629.
  24. Jia, H., Kong, Q.Q., Liu, Z., Wei, X.X., Li, X., M., Chen, J.P., Li, F., Yang, X., Sun, G.H. and Chen, C.M. (2019), "3D graphene/ carbon nanotubes/Polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band", Compos. Part A: Appl. Sci. Manuf., 129, 105712. http://doi.org/10.1016/j.compositesa.2019.105712.
  25. Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
  26. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://doi.org/10.1016/j.matdes.2016.12.061.
  27. Liu, D. (2020), "free vibration of functionally graded graphene platelets reinforced magnetic nanocomposite beams resting on elastic foundation", Nanomater., 10(11), 2193. http://doi.org/10.3390/nano10112193.
  28. Liu, H., Wu, H. and Lyu, Z. (2020), "Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection", Aerosp. Sci. Technol., 98, 105702. http://doi.org/10.1016/j.ast.2020.105702.
  29. Lu, L., She, G.L. and Guo, X. (2021b), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  30. Lu, L., Wang, S., Li, M. and Guo, X.M. (2021a), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. http://doi.org/10.1016/j.compstruct.2021.114231.
  31. Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
  32. Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect", Continuum. Mech. Therm., 34(4), 1051-1066. https://doi.org/10.1007/s00161-021-01038-8.
  33. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Math., 10, 583. https://doi.org/10.3390/math10040583.
  34. Wang, M., Xu, Y.G., Qiao, P. and Li, Z.M. (2021), "Buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates", Compos. Struct., 280, 114854. http://doi.org/10.1016/j.compstruct.2021.114854.
  35. Niu, Y. and Yao, M.H. (2021), "Linear and nonlinear vibrations of graphene platelet reinforced composite tapered plates and cylindrical panels", Aerosp. Sci. Technol., 115, 106798. http://doi.org/10.1016/j.ast.2021.106798.
  36. Rahimi, A., Alibeigloo, A. and Safarpour, M. (2020), "Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell", J. Vib. Control, 26(19-20), 1627-1645. http://doi.org/10.1177/1077546320902340.
  37. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021a), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin Wall. Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.
  38. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  39. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  40. Shen, H.S., Xiang, Y., Lin, F. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments", Comput. Meth. Appl. Mech. Eng., 319, 175-193. http://doi.org/10.1016/10.1016/j.cma.2017.02.029.
  41. Song, M., Gong, Y.H., Yang, J., Zhu, W. and Kitipornchai, S. (2020), "Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments", J. Sound Vib., 468, 115115. http://doi.org/10.1016/j.jsv.2019.115115.
  42. Wang, Y., Feng, C. and Wang, X. (2019), "Nonlinear free vibration of graphene platelets (GPLs)/polymer dielectric beam", Smart Mater. Struct., 28(5), 055013. http://doi.org/10.1088/1361-665X/ab0b51.
  43. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  44. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. http://doi.org/10.12989/scs.2022.42.3.397.
  45. Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. http://doi.org/10.1080/01495739.2022.2125137.
  46. Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293.
  47. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. http://doi.org/10.12989/scs.2022.43.6.797.