Case Studies of Machine Learning Algorithms Applied to Predicting Performance of Construction Materials

건설재료 성능예측을 위한 기계학습 알고리즘 적용 사례

  • Published : 2022.12.15

Abstract

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2022) 지원을 받아 작성되었음.

References

  1. Basha, S. M. and Rajput, D. S. (2019). Survey on evaluating the performance of machine learning algorithms: past contributions and future roadmap. In Deep Learning and Parallel Computing Environment for Bioengineering Systems, 153-164.
  2. Schmidt, J., Marques, M. R., Botti, S., and Marques, M. A. (2019). Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials, 5(1), 1-36.
  3. Xu, Y., Zhou, Y., Sekula, P., and Ding, L. (2021). Machine learning in construction: From shallow to deep learning. Developments in the Built Environment, 6, 100045.
  4. Chou, J. S., Tsai, C. F., Pham, A. D., and Lu, Y. H. (2014). Machine learning in concrete strength simulations: Multination data analytics. Construction and Building materials, 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054
  5. Bang, J., Park, S., and Jeon, H. (2022). Piezoresistive Prediction of CNTs-Embedded Cement Composites via Machine Learning Approaches. Computers Materials and Contitua, 71(1), 1503-1519. https://doi.org/10.32604/cmc.2022.020485
  6. Kim, H. K., Lim, Y., Tafesse, M., Kim, G. M., and Yang, B. (2022). Micromechanics-integrated machine learning approaches to predict the mechanical behaviors of concrete containing crushed clay brick aggregates. Construction and Building Materials, 317, 125840.
  7. Degefa A. B., Yang, B., Park, S. (2022). Predicting the degree of reaction of supplementary cementitious materials in hydrated portland cemenet, under review.
  8. Kim, H. K., Park, I. S. and Lee, H. K. (2014). Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio. Composite Structures, 116, 713-719.
  9. Cormos, C. C. (2022). Decarbonization options for cement production process: A techno-economic and environmental evaluation. Fuel, 320, 123907.
  10. Bullard, J. W., Garboczi, E. J., Stutzman, P. E., Feng, P., Brand, A. S., Perry, L., Hagedorn, J., Griffin W., and Terrill, J. E. (2019). Measurement and modeling needs for microstructure and reactivity of next-generation concrete binders. Cement and Concrete Composites, 101, 24-31. https://doi.org/10.1016/j.cemconcomp.2017.06.012
  11. Searson, D. P., Leahy, D. E., and Willis, M. J. (2011). Predicting the toxicity of chemical compounds using GPTIPS: a free genetic programming toolbox for MATLAB. Intelligent Control and Computer Engineering (pp. 83-93). Springer.