DOI QR코드

DOI QR Code

Transcriptional profiles of rock bream iridovirus (RBIV) using microarray approaches

  • Myung-Hwa, Jung (Department of Marine Bio and Medical Sciences, Hanseo University) ;
  • Jun-Young, Song (Pathology Division, National Institute of Fisheries Science) ;
  • Sung-Ju, Jung (Department of Aqualife Medicine, Chonnam National University)
  • Received : 2022.11.09
  • Accepted : 2022.12.06
  • Published : 2022.12.31

Abstract

Rock bream iridovirus (RBIV) causes high mortality and economic losses in the rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Viral open reading frames (ORFs) expression profiling at different RBIV infection stages was investigated using microarray approaches. Rock bream were exposed to the virus and held for 7 days at 23 ℃ before the water temperature was reduced to 17 ℃. Herein, 28% mortality was observed from 24 to 35 days post infection (dpi), after which no mortality was observed until 70 dpi (end of the experiment). A total of 27 ORFs were significantly up- or down-regulated after RBIV infection. In RBIV-infected rock bream, four viral genes were expressed after 2 dpi. Most RBIV ORFs (26 genes, 96.2%) were significantly elevated between 7 and 20 dpi. Among them, 12 ORF (44.4%) transcripts reached their peak expression intensity at 15 dpi, and 14 ORFs (51.8%) were at peak expression intensity at 20 dpi. Expression levels began to decrease after 25 dpi, and 92.6% of ORFs (25 genes) were expressed below 1-fold at 70 dpi. From the microarray data, in addition to the viral infection, viral gene expression profiles were categorized into three infection stages, namely, early (2 dpi), middle (7 to 20 dpi), and recovery (25 and 70 dpi). RBIV ORFs 009R, 023R, 032L, 049L, and 056L were remarkably expressed during RBIV infection. Furthermore, six ORFs (001L, 013R, 052L, 053L, 058L, and 061L) were significantly expressed only at 20 dpi. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to that of the microarray. Our results provide novel observations on broader RBIV gene expression at different stages of infection and the development of control strategies against RBIV infection.

Keywords

Acknowledgement

This research was supported by the National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Republic of Korea (R2022070).

References

  1. Williams, T.: The Iridoviruses. Adv Virus Res, 46: 345- 412, 1996. https://doi.org/10.1016/S0065-3527(08)60076-7
  2. Kurita, J. and Nakajima, K.: Megalocytiviruses. Viruses, 4: 521-538, 2012. https://doi.org/10.3390/v4040521
  3. Jung, S.J. and Oh, M.J.: Iridovirus-like infection associated with high mortalities of striped beak perch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korea peninsula. J Fish Dis, 23: 223-236, 2000.
  4. Jung, M.H., Jung, S.J., Vinay, T.N., Nikapitiya, C., Kim, J.O., Lee, J.H., Lee, J. and Oh, M.J.: Effects of water temperature on mortality in Megalocytivirus-infected rock bream Oplegnathus fasciatus (Temminck et Schlegel) and development of protective immunity. J Fish Dis, 38: 729-737, 2015. https://doi.org/10.1111/jfd.12286
  5. Jung, M.H., Lee, J. and Jung, S.J.: Low pathogenicity of FLIV (flounder iridovirus) and the absence of cross-protection between FLIV and RBIV (rock bream iridovirus). J Fish Dis, 39:1325-1333, 2016. https://doi.org/10.1111/jfd.12459
  6. Jung, M.H., Lee, J., Ortega-Villaizan, M., Perez, L. and Jung, S.J.: Protective immunity against Megalocytivirus infection in rock bream (Oplegnathus fasciatus) following CpG ODN administration. Vaccine, 35: 3691-3699, 2017a. https://doi.org/10.1016/j.vaccine.2017.05.073
  7. Jung, M.H. and Jung, S.J.: Protective immunity against rock bream iridovirus (RBIV) infection and TLR3-mediated type I interferon signaling pathway in rock bream (Oplegnathus fasciatus) following poly (I:C) administration. Fish. Shellfish Immunol, 67: 293-301, 2017a. https://doi.org/10.1016/j.fsi.2017.06.026
  8. Jung, M.H., Nikapitiya, C., Vinay, T.N., Lee, J. and Jung, S.J.: Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures. Fish. Shellfish Immunol, 70: 731-735, 2017b. https://doi.org/10.1016/j.fsi.2017.09.038
  9. Jung, M.H. and Jung, S.J.: Correlation of virus replication and spleen index in rock bream iridovirus infected rock bream Oplegnathus fasciatus. J. Fish. Pathol, 32:1-8, 2019.
  10. Jung, M.H. and Jung, S.J.: Microsatellite marker distribution pattern in rock bream iridovirus (RBIV) infected rock bream, Oplegnathus fasciatus. J. Fish. Pathol, 34: 9-15, 2021.
  11. Jung, M.H., Nikapitiya, C. and Jung, S.J.: DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus). Vaccine, 36: 802-810, 2018. https://doi.org/10.1016/j.vaccine.2017.12.077
  12. Jung, M.H., Nikapitiya, C., Kim, S.J., Han, H.J., Kim, M.S., Choi, H.S. and Jung, S.J.: Protective immunity induced by ankyrin repeat-containing protein-based DNA vaccine against rock bream iridovirus (RBIV) in rock bream (Oplegnathus fasciatus). Virus Research, 198827, 2022.
  13. Kwon, M.G., Kim, J.W., Park, M., Hwang, J.Y., Choi, H.S., Kim, M.C., Park, D.W., Jung, J.M. and Park, C.I.: Microarray analysis of gene expression in peripheral blood leucocytes from rock bream (Oplegnathus fasciatus) after stimulation by LPS, ConA/PMA, and poly I:C. Genes. Genomics, 35: 343-353, 2013,
  14. Jung, M.H., Chico, V., Ciordia, S., Mena, M.C., Jung, S.J. and Ortega-Villaizan, M.D.M.: The Megalocytivirus RBIV induces apoptosis and MHC Class I presentation in rock bream (Oplegnathus fasciatus) red blood cells. Frontiers in Immunology, 10: 160, 2019.
  15. Kim, A., Yoon, D., Lim, Y., Roh, H.J., Kim, S., Park, C.I., Kim, H.S., Cha, H.J., Choi, Y.H. and Kim, D.H.: Co-expression network analysis of spleen transcriptome in rock bream (Oplegnathus fasciatus) naturally infected with rock bream iridovirus (RBIV). Int J Mol Scien, 21: 1707, 2020.
  16. Jung, M.H., Nikapitiya, C., Song, J.Y., Lee, J.H., Lee, J., Oh, M.J. and Jung, S.J.: Gene expression of proand anti-apoptotic proteins in rock bream (Oplegnathus fasciatus) infected with Megalocytivirus (family Iridoviridae). Fish. Shellfish Immunol, 37: 122-130, 2014. https://doi.org/10.1016/j.fsi.2014.01.012
  17. Nikapitiya, C., Jung, S.J., Jung, M.H., Song, J.Y., Lee, J., Lee, J.H. and Oh, M.J.: Identification and Molecular Characterization of Z/ZE Lineage MHC Class I Heavy Chain Homologue and β2-microglobulin from Rock Bream Oplegnathus fasciatus. Fish. Pathol, 49: 93-112, 2014. https://doi.org/10.3147/jsfp.49.93
  18. Jung, M.H. and Jung, S.J.: Gene expression regulation of the TLR9 and MyD88-dependent pathway in rock bream against rock bream iridovirus (RBIV) infection. Fish. Shellfish Immunol, 70: 507-514, 2017b https://doi.org/10.1016/j.fsi.2017.09.036
  19. Jung, M.H. and Jung, S.J.: CpG ODN 1668 induce innate and adaptive immune responses in rock bream (Oplegnathus fasciatus) against rock bream iridovirus (RBIV) infection. Fish. Shellfish Immunol, 69: 247-257, 2017c. https://doi.org/10.1016/j.fsi.2017.08.030
  20. Jung, M.H. and Jung, S.J.: Innate immune responses against rock bream iridovirus (RBIV) infection in rock bream (Oplegnathus fasciatus) following poly (I:C) administration. Fish. Shellfish Immunol, 71: 171-176, 2017cd. https://doi.org/10.1016/j.fsi.2017.10.002
  21. Do, J.W., Moon, C.H., Kim, H.J., Ko, M.S., Kim, S.B., Son, J.H., Kim, J.S., An, E.J., Kim, M.K., Lee, S.K., Han, S.K., Cha, S.J., Park, M.S., Park, M.A., Kim, Y.C., Kim, J.W. and Park, J.W.: Complete genomic DNA sequence of rock bream iridovirus. Virology, 325: 351-363, 2004. https://doi.org/10.1016/j.virol.2004.05.008
  22. Caipang, C.M.A., Takano, T., Hirono, I. and Aoki, T.: Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish. Shellfish Immunol, 21: 130-138, 2006. https://doi.org/10.1016/j.fsi.2005.10.012
  23. Fu, X., Li, N., Lin, Q., Guo, H., Zhang, D., Liu, L. and Wu, S.: Protective immunity against infectious spleen and kidney necrosis virus induced by immunization with DNA plasmid containing mcp gene in Chinese perch Siniperca chuatsi. Fish. Shellfish Immunol, 40: 259-266, 2014. https://doi.org/10.1016/j.fsi.2014.07.012
  24. Thanasaksiri, K., Hirono, I., and Kondo, H.: Temperaturedependent regulation of gene expression in poly (I:C)-treated Japanese flounder, Paralichthys olivaceus. Fish. Shellfish Immunol, 45: 835-840, 2015. https://doi.org/10.1016/j.fsi.2015.05.036
  25. Cho, H.K., Kim, J., Moon, J.Y., Nam, B.H., Kim, Y.O., Kim, W.J., Park, J.Y., An, C.M., Cheong, J. and Kong, H.J.: Microarray analysis of gene expression in olive flounder liver infected with viral haemorrhagic septicaemia virus (VHSV). Fish. Shellfish Immunol, 49: 66-78, 2016.
  26. Romero, A., Forn-Cuni, G., Moreira, R., Milan, M., Bargelloni, L., Figueras, A. and Novoa, B.: An immune-enriched oligo-microarray analysis of gene expression in Manila clam (Venerupis philippinarum) haemocytes after a Perkinsus olseni challenge. Fish. Shellfish Immunol, 43: 275-286, 2015. https://doi.org/10.1016/j.fsi.2014.12.029
  27. Lua, D.T., Yasuike, M., Hirono, I. and Aoki, T.: Transcription program of red sea bream iridovirus as revealed by DNA microarrays. J. Virol. 79: 15151-15164, 2005. https://doi.org/10.1128/JVI.79.24.15151-15164.2005
  28. Lua, D.T., Yasuike, M., Hirono, I., Kondo, H. and Aoki, T.: Transcriptional profile of red seabream iridovirus in a fish model as revealed by viral DNA micro-arrays, Virus genes. 35 (2007) 449-461. https://doi.org/10.1007/s11262-007-0090-3
  29. Teng, Y., Hou, Z., Gong, J., Liu, H., Xie, X., Zhang, L., Chen, X. and Qin, Q.W.: Whole-genome transcriptional profiles of a novel marine fish iridovirus, Singapore grouper iridovirus (SGIV) in virus-infected grouper spleen cell cultures and in orangespotted grouper, Epinephulus coioides. Virology, 377: 39-48, 2008. https://doi.org/10.1016/j.virol.2008.04.011
  30. Livak, K.J. and Schmittgen, T.D.: Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402-408, 2001. https://doi.org/10.1006/meth.2001.1262
  31. Bennett, V.: Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J Biol Chem. 267: 8703-8706, 1992. https://doi.org/10.1016/S0021-9258(19)50333-7
  32. He, J.G., Deng, M., Weng, S.P., Li, Z., Zhou, S.Y., Long, Q.X. and Chan, S.M.: Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology, 291: 126-139, 2001. https://doi.org/10.1006/viro.2001.1208
  33. Herbert, M.H., Squire, C.J. and Mercer, A.A.: Poxviral ankyrin proteins. Viruses, 7: 709-738, 2015. https://doi.org/10.3390/v7020709
  34. Lu, Z., Li, Y., Zhang, Y., Kutish, G.F., Rock, D.L. and Van Etten, J.L.: Analysis of 45 kb of DNA located at the left end of the chlorella virus PBCV-1 genome. Virology, 206: 339-352, 1995. https://doi.org/10.1016/S0042-6822(95)80049-2
  35. Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H. and Claverie, J. M.: The 1.2-megabase genome sequence of Mimivirus. Science. 306: 1344-1350, 2004. https://doi.org/10.1126/science.1101485
  36. Bitra, K., Suderman, R.J. and Strand, M.R.: Polydnavirus Ank proteins bind NF-kappaB homodimers and inhibit processing of Relish. PLoS Pathog, 8: e1002722, 2012.
  37. Bin, L., Li, X., Feng, J., Richers, B. and Leung, D.Y.: Ankyrin Repeat Domain 22 Mediates Host Defense Against Viral Infection Through STING Signaling Pathway. J Immuol, 196: 201-204, 2016.
  38. Ink, B.S., Gilbert, C.S. and Evan, G.I.: Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes. J Virol, 69: 661-668, 1995. https://doi.org/10.1128/jvi.69.2.661-668.1995
  39. Revilla, Y., Callejo, M., Rodriguez, J.M., Culebras, E., Nogal, M.L., Salas, M. L. and Fresno, M.: Inhibition of nuclear factor κB activation by a virus-encoded IκB-like protein. J Biol Chem, 273: 5405-5411, 1998. https://doi.org/10.1074/jbc.273.9.5405
  40. Cunningham, C., Davison, A.J., Dolan, A., Frame, M.C., McGeoch, D.J., Meredith, D.M. and Orr, A. C.: The UL13 virion protein of herpes simplex virus type 1 is phosphorylated by a novel virus-induced protein kinase. J Gen Virol, 73: 303-311, 1992. https://doi.org/10.1099/0022-1317-73-2-303
  41. Overton, H.A., McMillan, D.J., Klavinskis, L.S., Hope, L., Ritchie, A.J. and Wong-Kai-In, P.: Herpes simplex virus type 1 gene UL13 encodes a phosphoprotein that is a component of the virion. Virology, 190: 184-192, 1992. https://doi.org/10.1016/0042-6822(92)91204-8
  42. Paterson, T. and Everett, R.D.: Mutational dissection of the HSV-1 immediate-early protein Vmw175 involved in transcriptional transactivation and repression. Virology, 166: 186-196, 1988. https://doi.org/10.1016/0042-6822(88)90160-2
  43. Mayer, U., Nischt, R., Poschl, E., Mann, K., Fukuda, K., Gerl, M. and Timpl, R.: A single EGF-like motif of laminin is responsible for high affinity nidogen binding. The EMBO Journal, 12: 1879-1885, 1993. https://doi.org/10.1002/j.1460-2075.1993.tb05836.x
  44. Takano, T., Matsuyama, T., Kawato, Y., Sakai, T., Kurita, J., Matsuura, Y. and Nakayasu, C.: Identification of the Epitope Recognized by the Anti-Red Sea Bream Iridovirus (RSIV) Monoclonal Antibody M10 Using a Phage Display RSIV Peptide Library. Fish Pathol, 54: 83-92, 2020. https://doi.org/10.3147/jsfp.54.83
  45. Xu, X., Weng, S., Lin, T., Tang, J., Huang, L., Wang, J. and He, J.:VP23R of infectious spleen and kidney necrosis virus mediates formation of virus-mock basement membrane to provide attaching sites for lymphatic endothelial cells. J Virol, 84: 11866-11875, 2010. https://doi.org/10.1128/JVI.00990-10
  46. Xu, X., Yan, M., Wang, R., Lin, T., Tang, J., Li, C. and He, J. G.: VP08R from infectious spleen and kidney necrosis virus is a novel component of the virus-mock basement membrane. J Virol, 88: 5491-5501, 2014. https://doi.org/10.1128/JVI.03776-13