과제정보
This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C1638). This article was based on the study of Dr. Yim's PhD dissertation. We thank Professor Won-hee Lim and Dr. Keunoh Lim for their contribution in performing the inter-examiner reliability test.
참고문헌
- Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging (Bellingham) 2017;4:014501. https://doi.org/10.1117/1.JMI.4.1.014501
- Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed 2020;194:105513. https://doi.org/10.1016/j.cmpb.2020.105513
- Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg 2019;30:91-5. https://doi.org/10.1097/SCS.0000000000004901
- Erkan M, Gurel HG, Nur M, Demirel B. Reliability of four different computerized cephalometric analysis programs. Eur J Orthod 2012;34:318-21. https://doi.org/10.1093/ejo/cjr008
- Wen J, Liu S, Ye X, Xie X, Li J, Li H, et al. Comparative study of cephalometric measurements using 3 imaging modalities. J Am Dent Assoc 2017;148:913-21. https://doi.org/10.1016/j.adaj.2017.07.030
- Rudolph DJ, Sinclair PM, Coggins JM. Automatic computerized radiographic identification of cephalometric landmarks. Am J Orthod Dentofacial Orthop 1998;113:173-9. https://doi.org/10.1016/S0889-5406(98)70289-6
- Mosleh MA, Baba MS, Malek S, Almaktari RA. Ceph-X: development and evaluation of 2D cephalometric system. BMC Bioinformatics 2016;17(Suppl 19):499. https://doi.org/10.1186/s12859-016-1370-5
- Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res 2020;99:249-56. https://doi.org/10.1177/0022034520901715
- Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 1-comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod 2019;89:903-9. https://doi.org/10.2319/022019-127.1
- Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 2-might it be better than human? Angle Orthod 2020;90:69-76. https://doi.org/10.2319/022019-129.1
- Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics: evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop 2020;81:52-68. https://doi.org/10.1007/s00056-019-00203-8
- Korean Association of Orthodontics Malocclusion White Paper Publication Committee. Cephalometric analysis of normal occlusion in Korean adults. Seoul: Korean Association of Orthodontists; 1997.
- Bujang MA, Baharum N. Guidelines of the minimum sample size requirements for Cohen's Kappa. Epidemiol Biostat Public Health 2017;14:e12267.
- McHugh ML. Interrater reliability: the Kappa statistic. Biochem Med (Zagreb) 2012;22:276-82. https://doi.org/10.11613/BM.2012.031
- Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015;115:211-52. https://doi.org/10.1007/s11263-015-0816-y
- Huang G, Liu Z, van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Jul 21-26; Honolulu, USA. Piscataway: IEEE, 2017. p. 2261-9.
- Goyal P, Dollar P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, et al. Accurate, large minibatch SGD: training ImageNet in 1 hour [Internet]. arxiv; 2017 Jun 8 [updated 2018 Apr 30; cited 2020 Aug 7]. Available from: https://arxiv.org/abs/1706.02677.
- Jia X, Song S, He W, Wang Y, Rong H, Zhou F, et al. Highly scalable deep learning training system with mixed-precision: training ImageNet in four minutes [Internet]. arxiv; 2018 Jul 30 [cited 2020 Aug 7]. Available from: https://arxiv.org/abs/1807.11205.
- Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift [Internet]. arxiv; 2015 Feb 11 [updated 2015 Mar 2; cited 2020 Sep 8]. Available from: https://arxiv.org/abs/1502.03167.
- Wu Y, He K. Group normalization. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, eds. ECCV 2018: Computer vision - ECCV 2018. Cham: Springer; 2018. p. 3-19.
- Deng J, Guo J, Xue N, Zafeiriou S. ArcFace: additive angular margin loss for deep face recognition. Paper presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, USA. Piscataway: IEEE, 2019. p. 4690-9.
- Dreiseitl S, Ohno-Machado L, Binder M. Comparing three-class diagnostic tests by three-way ROC analysis. Med Decis Making 2000;20:323-31. https://doi.org/10.1177/0272989X0002000309
- Li J, Fine JP. ROC analysis with multiple classes and multiple tests: methodology and its application in microarray studies. Biostatistics 2008;9:566-76. https://doi.org/10.1093/biostatistics/kxm050
- van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008;9:2579-605.
- Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Paper presented at: 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. Piscataway: IEEE, 2017. p. 618-26.