DOI QR코드

DOI QR Code

Verification of Weight Effect Using Actual Flight Data of A350 Model

A350 모델의 비행실적을 이용한 중량 효과 검증

  • Received : 2021.10.27
  • Accepted : 2021.12.20
  • Published : 2022.01.01

Abstract

Aircraft weight is an important factor affecting performance and fuel efficiency. In the conceptual design stage of the aircraft, the process of balancing cost and weight is performed using empirical formulas such as fuel consumption cost per weight in estimating element weight. In addition, when an airline operates an aircraft, it promotes fuel efficiency improvement, fuel saving and carbon reduction through weight management activities. The relationship between changes in aircraft weight and changes in fuel consumption is called the cost of weight, and the cost of weight is used to evaluate the effect of adding or reducing weight to an aircraft on fuel consumption. In this study, the problems of the existing cost of weight calculation method are identified, and a new cost of weight calculation method is introduced to solve the problem. Using Breguet's Range Formula and actual flight data of the A350-900 aircraft, two weight costs are calculated based on take-off weight and landing weight. In conclusion, it was suggested that it is reasonable to use the cost of weight based on the take-off weight and the landing weight for other purposes. In particular, the cost of weight based on the landing weight can be used as an empirical formula for estimating element weight and optimizing cost and weight in the conceptual design stage of similar aircraft.

항공기 중량은 성능 및 연료효율성에 영향을 미치는 중요한 요소이다. 항공기의 개념 설계 단계에서는 요소 중량을 추정함에 중량 당 연료소모 비용과 같은 경험식을 이용하여 비용과 중량 간의 균형을 맞추는 과정을 수행한다. 또한, 항공사에서 항공기를 운용할 때 중량관리 활동을 통해 연료 효율성 향상 및 연료절감과 탄소저감을 추진한다. 항공기 중량 변화와 연료 소모 변화 사이의 연관성을 중량비용(Cost of Weight)이라고 하며, 중량비용은 항공기에 중량 추가 혹은 감소가 연료소모에 미치는 영향을 평가함에 사용하고 있다. 본 연구에서는 기존 중량비용 산정 방법의 문제점을 확인하고, 이를 해결하기 위한 새로운 방법의 중량비용 산정 방법을 소개한다. Breguet의 Range Formula와 A350-900 항공기의 실제 비행 데이터를 이용하여 이륙중량과 착륙중량 기반의 두 가지 중량비용을 산정한다. 결론에서는 이륙중량과 착륙중량 기반의 중량비용을 다른 용도로 사용함이 합리적임을 제시하였다. 특히, 착륙중량 기반의 중량비용은 유사 항공기 개념설계 단계에서 요소중량 추정 및 비용과 중량 최적화에 하나의 경험식으로 활용할 수 있다.

Keywords

References

  1. Park, I. K., "Weight & Cost Estimation of General Aviation Aircraft on the Conceptual Design Phase," Proceeding of the Korean Society for Aeronautical and Space Sciences Spring Conference, April 2007, pp. 369~373.
  2. Bai, C., Mingqiang, L., Zhong, S., Zhe, W., Yiming, M. and Lei, F., "Wing weight estimation considering constraints of structural strength and stiffness in aircraft conceptual design," International Journal of Aeronautical and Space Sciences, Vol. 15, No. 4, 2014, pp. 383~395. https://doi.org/10.5139/IJASS.2014.15.4.383
  3. Woo, J. M., "Software Development for Aircraft Weight Estimation," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2013, pp. 214~217.
  4. Kim, S. B., Jeong, H. G. and Hwang, H. Y., "A Study on Deriving the Statistical Weight Estimation Formula for an Aircraft Wing," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 1, 2018, pp. 32~40. https://doi.org/10.5139/JKSAS.2018.46.1.32
  5. Kaufmann, M., "Cost/Weight Optimization of Aircraft Structures", Licentiate Thesis, KTH School of Engineering Sciences, Stockholm, February 2008.
  6. Jang, S. W., Lee, Y. J. and Yoo, K. E., "A321 NEO/CEO Fuel Efficiency Comparison and Economic Analysis," Journal of the Aviation Management Society of Korea, Vol. 18, No. 5, 2020, pp. 3~16. https://doi.org/10.30529/AMSOK.2020.18.5.001
  7. Jang, S. W., Lee, Y. J., Kim, K. Wo., Yoo, J. L. and Yoo, K. E., "Verification of Winglet Effect and Economic Analysis Using Actual Flight of A321 Sharklet Model," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 4, 2021, pp. 273~279. https://doi.org/10.5139/JKSAS.2021.49.4.273
  8. Jang, S. W., Cho, Y. H., Yoo, J. L. and Yoo, K. E., "PIP Application Effect Analysis (A350 Case)," Journal of the Korean Society for Aviation and Aeronautics, Vol. 29, No. 3, 2021, pp. 44~51. https://doi.org/10.12985/ksaa.2021.29.3.044
  9. Tsai, W. H., Chang, Y. C., Lin, S. J., Chen, H. C. and Chu, P. Y., "A green approach to the weight reduction of aircraft cabins," Journal of Air Transport Management, Vol. 40, August 2014, pp. 65~77. https://doi.org/10.1016/j.jairtraman.2014.06.004
  10. Lee, J. O., Jeon, J. H. and Park, J. M., "A Study on Fuel Saving Measure by Fuel Efficiency Analysis Associated with Weight," Journal of the Korean Society for Aviation and Aeronautics, Vol. 26, No. 4, 2018, pp. 142~148. https://doi.org/10.12985/KSAA.2018.26.4.142
  11. Yoo, S. H., Yoo, K. E., Choi, S. H. and Chang, H. S., "A Study on Reducing Aircraft Fuel Consumption by Reserve Fuel Reduction - A Case Study by Statistical Analysis," Journal of the Aviation Management Society of Korea, Vol. 15, No. 3, June 2017, pp. 67~95.
  12. Ryerson, M. S., Hansen, M., Hao, L. and Seelhorst, M., "Landing on empty: estimating the benefits from reducing fuel uplift in US Civil Aviation," Environmental Research Letters, Vol. 10, No. 9, August 2015, pp. 1~11.
  13. Openairlines.com, "How to use the cost of weight to be more fuel efficient?," February 2019. https://blog.openairlines.com/how-to-use-the-cost-of-weight-to-be-more-fuel-efficient. Accessed August 6, 2021.
  14. Aircraftit.com, "A New Approach to Cost of Weight (COW)", 2012, https://www.aircraftit.com/articles/a-new-approach-to-cost-of-weight-cow/. Accessed August 6, 2021.
  15. Aerospaceengineeringblog.com, "Breguet Range Equation," 2013, https://aerospaceengineeringblog.com/breguet-range-equation/. Accessed August 9, 2021.