과제정보
이 논문은 산업자원통상부 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(수소전기차용 고기밀 경량화 일체형 수소 밸브 모듈 개발).
참고문헌
- York, R. Do alternative energy sources displace fossil fuels?, Nature Clim Change, 2, 441 (2012). Doi: https://doi.org/10.1038/nclimate1451
- S. Sharma, S. Agarwal, A. Jain, Significance of Hydrogen as Economic and Environmentally Friendly Fuel, Energies, 14, 7389 (2021). Doi: https://doi.org/10.3390/en14217389
- I. Staffel, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12, 463 (2019). Doi: https://doi.org/10.1039/C8EE01157E
- S. K. Dash, S. Chakraborty, M. Roccotelli and U.K. Sahu, Hydrogen Fuel for Future Mobility: Challenges and Future Aspects, Sustainability, 14, 8285 (2022). https://doi.org/10.3390/su14148285
- Y. Wu and H. Gao, Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles, IEEE Transactions on Vehicular Technology, 55, 1748, (2006). Doi: https://doi.org/10.1109/TVT.2006.883764
- E. Pouillier, A. F. Gourgues, D. Tanguy and E. P. Busso, A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement, International Journal of Plasticity, 34, 139 (2012). Doi: https://doi.org/10.1016/j.ijplas.2012.01.004
- M. Safyari, M. Moshtaghi, S. Kuramoto, On the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy, Journal of Alloys and Compounds, 855, 1 (2021). Doi: https://doi.org/10.1016/j.jallcom.2020.157300
- S. Charca, O. Uwakweh, V. Agarwala, Hydrogen Transport Conditions and Effects in Cathodically Polarized AF1410 Steel, Metallurgical and Materials Transactions A, 38, 389 (2007). Doi: https://doi.org/10.1007/s11661-007-9241-3
- T. Ohnishi and T. Ito, Effects of Cathodic Hydrogen Charging on the Mechanical Properties of an Al-Li-Cu-Mg-Zr Alloy, Transactions of the Japan Institute of Metals, 29, 642 (1988). Doi: https://doi.org/10.2320/matertrans1960.29.642
- M. Hershkovitz, I.A. Blech and Y. Komem, Stress relaxation in thin aluminium films, Thin Solid Films, 130, 87-93 (1985). Doi: https://doi.org/10.1016/0040-6090(85)90298-6
- I. Chasiotis and W.G. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Experimental Mechanics, 42, 51 (2002). Doi: https://doi.org/10.1007/BF02411051
- K. H. So, J. S. Kim, Y. S. Chun, K.T. Park, Y. K. Lee and C. S. Lee, Hydrogen Delayed Fracture Properties and Internal Hydrogen Behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel, ISIJ International, 49, 1952 (2009). Doi: https://doi.org/10.2355/isijinternational.49.1952
- W. M. Mook, J. D. Nowak, C. R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry and W.W. Gerberich, Compressive stress effect on nanoparticle modulus and fracture, Physical Review, 75, 898 (2007). Doi: https://doi.org/10.1103/PhysRevB.75.214112
- W. Gerberich, J. Michler, W. Mook, R. Ghisleni, F. Ostlund, D. Stauffer and R. Ballarini, Scale effects for strength, ductility, and toughness in "brittle" materials, Journal of Materials Research, 24, 898 (2009). Doi: https://doi.org/10.1557/jmr.2009.0143
- X. Li, J. Zhang, Y. Wang, B. Li, P. Zhang and X. Song, Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels, Materials Science and Engineering A, 641, 45 (2015). Doi: https://doi.org/10.1016/j.msea.2015.06.003
- S. J. Lee, M. S Han, S. K. Jang and S.J. Kim, Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material, Corrosion Science and Technology, 14, 226 (2015). Doi: http://dx.doi.org/10.14773/cst.2015.14.5.226
- M. d. J. Galvez-Vazquez, V. Grozovski, N. Kovacs, P. Broekmann and S. Vesztergom, Full Model for the TwoStep Polarization Curves of Hydrogen Evolution, Measured on RDEs in Dilute Acid Solutions, The Journal of Physical Chemistry C, 124, 3988 (2020). Doi: https://doi.org/10.1021/acs.jpcc.9b11337
- J. S Kim, Effects of Heat Treatment on Stress Corrosion Cracking and Hydrogen Embrittlement of Al Alloy for ship, A thesis of doctorate, Mokpo maritime university, p. 47 (2010).
- T. Tsutsumi, T. Watakabe and G. Itoh, Behavior of Hydrogen in Electrolytically Charged Aluminum, Advanced Materials Research, 409, 84, (2011). Doi: https://doi.org/10.4028/www.scientific.net/AMR.409.84
- Z. Zhang, X. Zhou, H. Zhang, J. Guo and Hua Ning, Hydrogen penetration and diffusion on Mg17Al12 (110) surface: A density functional theory investigation, International Journal of Hydrogen Energy, 42, 26013 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2017.08.176
- S. M. Charca, O. N. Uwakweh, B. Shafiq, et al., Characterization of Hydrogen Permeation in Armco-Fe during Cathodic Polarization in Aqueous Electrolytic Media, Journal of Materials Engineering and Performance, 17, 127 (2008). Doi: https://doi.org/10.1007/s11665-007-9114-3
- V.M. Polyanskii, Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys, Material Science, 21, 301 (1986). Doi: https://doi.org/10.1007/BF00726550
- Y. Mine, Fatigue crack growth behavior and hydrogen penetration properties in austenitic stainless steels exposed to high-pressure hydrogen gas environment, Tetsu-To-Hagane, 93, 47 (2007). Doi: https://doi.org/10.1299/kikaia.74.1016
- S. J. Kim, Theoretical Considerations of Numerical Model for Hydrogen Diffusion Behavior of High-Strength Steel Under Combined Action of Tensile Stress and H2S Corrosion, Corrosion Science and Technology, 18, 102 (2019). Doi: https://doi.org/10.14773/CST.2019.18.3.102
- J. Song and W. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron, Nature Mater, 12, 145 (2013). Doi: https://doi.org/10.1038/nmat3479
- J. H. Huang, C. J. Altstetter, Internal hydrogen-induced subcritical crack growth in austenitic stainless steels, Metallurgical and Materials Transaction A, 22, 2605 (1991). Doi: https://doi.org/10.1007/BF02851354
- S. J. Kim, and K. Y. Kim, An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation, Corrosion Science and Technology, 16, 209 (2017). Doi: https://doi.org/10.14773/cst.2017.16.4.209
- S. K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement in different materials: A review, International Journal of Hydrogen Energy, 43, 21603 (2018). Doi: https://doi.org/10.1016/j.ijhydene.2018.09.201
- Yingjie Yan, Yu Yan, Yang He, Jinxu Li, Yanjing Su, Lijie Qiao, Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment, International Journal of Hydrogen Energy, 40, 2404 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.020