DOI QR코드

DOI QR Code

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure

알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구

  • Rian, Kim (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Chanyoung, Jeong (Department of Advanced Materials Engineering, Dong-eui University)
  • 김리안 (동의대학교 금속소재공학과) ;
  • 정찬영 (동의대학교 금속소재공학과)
  • Received : 2022.10.20
  • Accepted : 2022.11.12
  • Published : 2022.12.30

Abstract

Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다(202202110001).

References

  1. Y. Madhavi, N. Narasaiah, A. Jyothirmayi, Influence of surface-roughness on the corrosion-fatigue behavior of MAO coated 6061-T6 Al alloy assessed in NaCl medium, Surface and Coatings Technology, 14, 127102 (2021). Doi: https://doi.org/10.1016/j.surfcoat.2021.127102
  2. L. Telmenbayar, A.G. Ramu, D. Yang, M. Song, O. Erdenebat, D. Choi, Corrosion resistance of the anodization/glycidoxypropyltrimethoxysilane composite coating on 6061 aluminum alloy, Surface and Coatings Technology, 403, 126433 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126433
  3. R. Krishna, Y. Madhavi, T. Sahithi, N. P. Wasekar, N. M. Chavan, D. S. Rao, Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy, International Journal of Fatigue, 106, 165-174 (2018). Doi: https://doi.org/10.1016/j.ijfatigue.2017.09.020
  4. J. Zang, S. Yu, G. Zhu, X. Zhou, Fabrication of superhydrophobic surface on aluminum alloy 6061 by a facile and effective anodic oxidation method, Surface and Coatings Technology, 380, 125078 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.125078
  5. S. Fu, R.P. Sahu, E. Diaz, J.R. Robles, C. Chen, X. Rui, R.F. Klie, A.L. Yarin, J.T. Abiade Dynamic study of liquid drop impact on supercooled cerium dioxide: anti-icing behavior, Langmuir, 32, 6148 (2016). Doi: https://doi.org/10.1021/acs.langmuir.6b00847
  6. M. I. Bakshi, H. Khatoon, S. Ahmad, Hydrophobic, mechanically robust polysorbate-enveloped cerium oxide-dispersed oleo-polyetheramide nanocomposite coatings for anticorrosive and anti-icing applications, Industrial & Engineering Chemistry Research, 59, 6617 (2020). Doi: https://doi.org/10.1021/acs.iecr.9b06580
  7. Y. Zhang, X. Yu, H. Wu, J. Wu, Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects, Applied Surface Science, 258, 8253 (2012). Doi: https://doi.org/10.1016/j.apsusc.2012.05.032
  8. J. Dong, J. Chen, Z. Chen, Y. Zhou, Air-side thermal hydraulic performance of offset strip fin aluminum heat exchangers, Applied Thermal Engineering, 27, 306 (2007). Doi: https://doi.org/10.1016/j.applthermaleng.2006.08.005
  9. G. Y. Liu, Y. Yuan, R. J. Liao, H. Y. Xiang, L. Wang, Q. Yu, C. Zhang, Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance, Surfaces and Interfaces, 28, 101588 (2022). Doi: https://doi.org/10.1016/j.mee.2020.111430
  10. J. Fahim, S. M. M. Hadavi, H. Ghayour, S. H. Tabrizi, Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy, Wear, 424, 122 (2019). Doi: https://doi.org/10.1016/j.wear.2019.02.017
  11. P. Atz-Dick, A. Konrath, Y. R. Melo, C. Radtke, L. F. Dick, Aluminum anodizing with simultaneous silanization for increased hydrophobicity and corrosion protection, Applied Surface Science, 593, 153392 (2022). Doi: https://doi.org/10.1016/j.apsusc.2022.153392
  12. T. Darmanin, F. Guittard, Superhydrophobic and superoleophobic properties in nature, Materials today, 18, 273 (2015). Doi: https://doi.org/10.1016/j.mattod.2015.01.001
  13. D. Y. Kwok, A. W. Neumann, Contact angle measurement and contact angle interpretation, Advances in colloid and interface science, 81, 167 (1999). Doi: https://doi.org/10.1016/S0001-8686(98)00087-6
  14. J. F. Joanny, P. G. De Gennes, A model for contact angle hysteresis, The journal of chemical physics, 81, 552 (1984). Doi: https://doi.org/10.1063/1.447337
  15. D. Nakajima, T. Kikuchi, T. Yoshioka, H. Matsushima, M. Ueda, R. O. Suzuki, S. Natsui, A superhydrophilic aluminum surface with fast water evaporation based on anodic alumina bundle structures via anodizing in pyrophosphoric acid, Materials, 12, 3497 (2019). Doi: https://doi.org/10.3390/ma12213497
  16. E. Jenner, C. Barbier, B. D'Urso, Durability of hydrophobic coatings for superhydrophobic aluminum oxide, Applied surface science, 282, 73 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.05.049
  17. Y. Wang, W. wang, L. Zhong, J. Wang, Q. Jiang. X. Guo, Super-Hydrophobic Surface on Pure Magnesium Substrate by Wet Chemical Method, Applied Surface Science, 256, 3837 (2010). Doi: https://doi.org/10.1016/j.apsusc.2010.01.037
  18. A. Milionis, E. Loth, I. S. Bayer, Recent Advances in the Mechanical Durability of Superhydrophobic Materials, Advances in colloid and interface science, 229, 57 (2016). Doi: https://doi.org/10.1016/j.cis.2015.12.007
  19. C.J. Donahue, J.A. Exline, Anodizing and Coloring Aluminum Alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598
  20. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
  21. M. Saeeddikhani, M. Javidi, A. Yazdani, Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior, Transactions of Nonferrous Metals Society of China, 23, 2551 (2013). Doi: https://doi.org/10.1016/S1003-6326(13)62767-3
  22. L. Benea, N. Simionescu-Bogatu, R. Chiriac, Electrochemically Obtained Al2O3 Nanoporouslayers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2636 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038
  23. A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862
  24. C. Jeong, Ph. D. Thesis, p132, Stevens Institute of Technology, New Jersey (2013).
  25. C. Blawert, W. Dietzel, E. Ghali, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257
  26. C. Jeong, J. Lee, K. Sheppard, and C.-H. Choi, AirImpregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
  27. Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602
  28. M. Kim, E. Choi, J. So, J. S. Shin, C. W. Chung, S. J. Maeng, J. Y. Yun, Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature, Journal of Materials Research and Technology, 11, 219 (2021). Doi: https://doi.org/10.1016/j.jmrt.2020.12.086
  29. W. Lee, R. Ji, U. Gosele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials, 5, 741 (2006) Doi: https://www.nature.com/articles/nmat1717
  30. C. Jeong, C.Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostrutures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, Applied Materials & Interfaces, 4, 842 (2011). Doi: https://doi.org/10.1021/am201514n
  31. C. Jeong, H. Ji, Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052 aluminum alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
  32. Y. Wu, C. Zhang, Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface, Applied thermal engineering, 58, 664 (2013). Doi: https://doi.org/10.1016/j.applthermaleng.2013.01.048
  33. T. Young, III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, 95, 65 (1805). Doi: https://doi.org/10.1098/rstl.1805.0005
  34. J. Kijlstra, K. Reihs, A. Klamt, Roughness and topology of ultra-hydrophobic surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 521 (2002). Doi: https://doi.org/10.1016/S0927-7757(02)00089-4
  35. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28, 988 (1936). Doi: https://doi.org/10.1021/ie50320a024
  36. E. Puukilainen, T. Rasilainen, M. Suvanto, T. A. Pakkanen, Superhydrophobic Polyolefin Surfaces: Controlled Micro- and Nanostructures, Langmuir, 23, 7263 (2007). Doi: https://doi.org/10.1021/la063588h
  37. A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40, 546 (1944). Doi: https://doi.org/10.1039/TF9444000546
  38. E. Bormashenko, Why does the Cassie-Baxter equation apply?, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324, 47 (2008). Doi: https://doi.org/10.1016/j.colsurfa.2008.03.025
  39. G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chemical Physics Letters, 450, 355 (2008). Doi: https://doi.org/10.1016/j.cplett.2007.11.033
  40. W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. McKinley, A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, Journal of colloid and interface science, 339, 208 (2009). Doi: https://doi.org/10.1016/j.jcis.2009.07.027
  41. W. Gu, K. Song, Z. Cheng, Q. Wang, S. Wang, X. Wang, Y. Zhang, Water-Based Robust Transparent Superamphiphobic Coatings for Resistance to Condensation, Frosting, Icing, and Fouling, Advanced Materials Interfaces, 7, 1902201 (2020). Doi: https://doi.org/10.1002/admi.201902201
  42. H. Luo, S. Yin, S. Huang, F. Chen, Q. Tang, X. Li, Fab-rication of slippery Zn surface with improved waterimpellent, condensation and anti-icing properties, Applied Surface Science, 470, 1139 (2019). Doi: https://doi.org/10.1016/j.apsusc.2018.10.174
  43. S. Farhadi, M. Farzaneh, S. A. Kulinich, Anti-icing performance of superhydrophobic surfaces, Applied Surface Science, 257, 6264 (2011). Doi: https://doi.org/10.1016/j.apsusc.2011.02.057
  44. I. V. Roslyakov, I. V. Kolesnik, E. E. Levin, N. S. Katorova, P. P. Pestrikov, T. Y. Kardash, K. S. Napolskii, Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte, Surface and Coatings Technology, 381, 125159 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2019.125159