Acknowledgement
본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다(202202110001).
References
- Y. Madhavi, N. Narasaiah, A. Jyothirmayi, Influence of surface-roughness on the corrosion-fatigue behavior of MAO coated 6061-T6 Al alloy assessed in NaCl medium, Surface and Coatings Technology, 14, 127102 (2021). Doi: https://doi.org/10.1016/j.surfcoat.2021.127102
- L. Telmenbayar, A.G. Ramu, D. Yang, M. Song, O. Erdenebat, D. Choi, Corrosion resistance of the anodization/glycidoxypropyltrimethoxysilane composite coating on 6061 aluminum alloy, Surface and Coatings Technology, 403, 126433 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126433
- R. Krishna, Y. Madhavi, T. Sahithi, N. P. Wasekar, N. M. Chavan, D. S. Rao, Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy, International Journal of Fatigue, 106, 165-174 (2018). Doi: https://doi.org/10.1016/j.ijfatigue.2017.09.020
- J. Zang, S. Yu, G. Zhu, X. Zhou, Fabrication of superhydrophobic surface on aluminum alloy 6061 by a facile and effective anodic oxidation method, Surface and Coatings Technology, 380, 125078 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.125078
- S. Fu, R.P. Sahu, E. Diaz, J.R. Robles, C. Chen, X. Rui, R.F. Klie, A.L. Yarin, J.T. Abiade Dynamic study of liquid drop impact on supercooled cerium dioxide: anti-icing behavior, Langmuir, 32, 6148 (2016). Doi: https://doi.org/10.1021/acs.langmuir.6b00847
- M. I. Bakshi, H. Khatoon, S. Ahmad, Hydrophobic, mechanically robust polysorbate-enveloped cerium oxide-dispersed oleo-polyetheramide nanocomposite coatings for anticorrosive and anti-icing applications, Industrial & Engineering Chemistry Research, 59, 6617 (2020). Doi: https://doi.org/10.1021/acs.iecr.9b06580
- Y. Zhang, X. Yu, H. Wu, J. Wu, Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects, Applied Surface Science, 258, 8253 (2012). Doi: https://doi.org/10.1016/j.apsusc.2012.05.032
- J. Dong, J. Chen, Z. Chen, Y. Zhou, Air-side thermal hydraulic performance of offset strip fin aluminum heat exchangers, Applied Thermal Engineering, 27, 306 (2007). Doi: https://doi.org/10.1016/j.applthermaleng.2006.08.005
- G. Y. Liu, Y. Yuan, R. J. Liao, H. Y. Xiang, L. Wang, Q. Yu, C. Zhang, Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance, Surfaces and Interfaces, 28, 101588 (2022). Doi: https://doi.org/10.1016/j.mee.2020.111430
- J. Fahim, S. M. M. Hadavi, H. Ghayour, S. H. Tabrizi, Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy, Wear, 424, 122 (2019). Doi: https://doi.org/10.1016/j.wear.2019.02.017
- P. Atz-Dick, A. Konrath, Y. R. Melo, C. Radtke, L. F. Dick, Aluminum anodizing with simultaneous silanization for increased hydrophobicity and corrosion protection, Applied Surface Science, 593, 153392 (2022). Doi: https://doi.org/10.1016/j.apsusc.2022.153392
- T. Darmanin, F. Guittard, Superhydrophobic and superoleophobic properties in nature, Materials today, 18, 273 (2015). Doi: https://doi.org/10.1016/j.mattod.2015.01.001
- D. Y. Kwok, A. W. Neumann, Contact angle measurement and contact angle interpretation, Advances in colloid and interface science, 81, 167 (1999). Doi: https://doi.org/10.1016/S0001-8686(98)00087-6
- J. F. Joanny, P. G. De Gennes, A model for contact angle hysteresis, The journal of chemical physics, 81, 552 (1984). Doi: https://doi.org/10.1063/1.447337
- D. Nakajima, T. Kikuchi, T. Yoshioka, H. Matsushima, M. Ueda, R. O. Suzuki, S. Natsui, A superhydrophilic aluminum surface with fast water evaporation based on anodic alumina bundle structures via anodizing in pyrophosphoric acid, Materials, 12, 3497 (2019). Doi: https://doi.org/10.3390/ma12213497
- E. Jenner, C. Barbier, B. D'Urso, Durability of hydrophobic coatings for superhydrophobic aluminum oxide, Applied surface science, 282, 73 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.05.049
- Y. Wang, W. wang, L. Zhong, J. Wang, Q. Jiang. X. Guo, Super-Hydrophobic Surface on Pure Magnesium Substrate by Wet Chemical Method, Applied Surface Science, 256, 3837 (2010). Doi: https://doi.org/10.1016/j.apsusc.2010.01.037
- A. Milionis, E. Loth, I. S. Bayer, Recent Advances in the Mechanical Durability of Superhydrophobic Materials, Advances in colloid and interface science, 229, 57 (2016). Doi: https://doi.org/10.1016/j.cis.2015.12.007
- C.J. Donahue, J.A. Exline, Anodizing and Coloring Aluminum Alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598
- C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
- M. Saeeddikhani, M. Javidi, A. Yazdani, Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior, Transactions of Nonferrous Metals Society of China, 23, 2551 (2013). Doi: https://doi.org/10.1016/S1003-6326(13)62767-3
- L. Benea, N. Simionescu-Bogatu, R. Chiriac, Electrochemically Obtained Al2O3 Nanoporouslayers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2636 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038
- A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862
- C. Jeong, Ph. D. Thesis, p132, Stevens Institute of Technology, New Jersey (2013).
- C. Blawert, W. Dietzel, E. Ghali, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257
- C. Jeong, J. Lee, K. Sheppard, and C.-H. Choi, AirImpregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
- Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602
- M. Kim, E. Choi, J. So, J. S. Shin, C. W. Chung, S. J. Maeng, J. Y. Yun, Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature, Journal of Materials Research and Technology, 11, 219 (2021). Doi: https://doi.org/10.1016/j.jmrt.2020.12.086
- W. Lee, R. Ji, U. Gosele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials, 5, 741 (2006) Doi: https://www.nature.com/articles/nmat1717
- C. Jeong, C.Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostrutures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, Applied Materials & Interfaces, 4, 842 (2011). Doi: https://doi.org/10.1021/am201514n
- C. Jeong, H. Ji, Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052 aluminum alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
- Y. Wu, C. Zhang, Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface, Applied thermal engineering, 58, 664 (2013). Doi: https://doi.org/10.1016/j.applthermaleng.2013.01.048
- T. Young, III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, 95, 65 (1805). Doi: https://doi.org/10.1098/rstl.1805.0005
- J. Kijlstra, K. Reihs, A. Klamt, Roughness and topology of ultra-hydrophobic surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 521 (2002). Doi: https://doi.org/10.1016/S0927-7757(02)00089-4
- R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28, 988 (1936). Doi: https://doi.org/10.1021/ie50320a024
- E. Puukilainen, T. Rasilainen, M. Suvanto, T. A. Pakkanen, Superhydrophobic Polyolefin Surfaces: Controlled Micro- and Nanostructures, Langmuir, 23, 7263 (2007). Doi: https://doi.org/10.1021/la063588h
- A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40, 546 (1944). Doi: https://doi.org/10.1039/TF9444000546
- E. Bormashenko, Why does the Cassie-Baxter equation apply?, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324, 47 (2008). Doi: https://doi.org/10.1016/j.colsurfa.2008.03.025
- G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chemical Physics Letters, 450, 355 (2008). Doi: https://doi.org/10.1016/j.cplett.2007.11.033
- W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. McKinley, A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, Journal of colloid and interface science, 339, 208 (2009). Doi: https://doi.org/10.1016/j.jcis.2009.07.027
- W. Gu, K. Song, Z. Cheng, Q. Wang, S. Wang, X. Wang, Y. Zhang, Water-Based Robust Transparent Superamphiphobic Coatings for Resistance to Condensation, Frosting, Icing, and Fouling, Advanced Materials Interfaces, 7, 1902201 (2020). Doi: https://doi.org/10.1002/admi.201902201
- H. Luo, S. Yin, S. Huang, F. Chen, Q. Tang, X. Li, Fab-rication of slippery Zn surface with improved waterimpellent, condensation and anti-icing properties, Applied Surface Science, 470, 1139 (2019). Doi: https://doi.org/10.1016/j.apsusc.2018.10.174
- S. Farhadi, M. Farzaneh, S. A. Kulinich, Anti-icing performance of superhydrophobic surfaces, Applied Surface Science, 257, 6264 (2011). Doi: https://doi.org/10.1016/j.apsusc.2011.02.057
- I. V. Roslyakov, I. V. Kolesnik, E. E. Levin, N. S. Katorova, P. P. Pestrikov, T. Y. Kardash, K. S. Napolskii, Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte, Surface and Coatings Technology, 381, 125159 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2019.125159