
1. Introduction

Seas are the great source of human food. Every year

million tons of fishes of various species are caught by
fishing vessels. These loss of the fishes in the stocks by
fishing mortality are usually replenished by the natural
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Abstract: Marine fisheries resources face major anthropogenic threat from unregulated fishing activities; thus
require precise detection for protection through marine surveillance. Korea developed an efficient land-based
small fishing vessel monitoring system using real-time V-Pass data. However, those data directly do not provide
information on fishing activities, thus further efforts are necessary to differentiate their activity status. In Korea,
especially in Busan, longlining is practiced by many small fishing vessels to catch several types of fishes that
need to be identified for proper monitoring. Therefore, in this study we have improved the existing fishing status
classification method by applying Hidden Markov Model (HMM) on V-Pass data in order to further classify
their fishing status into three groups, viz. non-fishing, longlining and other types of fishing. Data from 206 fishing
vessels at Busan on 05 February, 2021 were used for this purpose. Two tiered HMM was applied that first
differentiates non-fishing status from the fishing status, and finally classifies that fishing status into longlining
and other types of fishing. Data from 193 and 13 ships were used as training and test datasets, respectively. Using
this model 90.45% accuracy in classifying into fishing and non-fishing status and 88.23% overall accuracy in
classifying all into three types of fishing statuses were achieved. Thus, this method is recommended for
monitoring the activities of small fishing vessels equipped with V-Pass, especially for detecting longlining.
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breeding and growth of fishes. It is necessary to keep
the fishing pressure on fishing stocks within allowable
range in order to remain those stocks sustainable.
However, nowadays overfishing has become a common
issue in various seas of the world which causes great
loss to fish stocks; thus become the major threat to their
sustainability. The overfishing is mainly done as Illegal,
Unreported and Unregulated (IUU) fishing activities.
Illegal fishing takes approximately 20% of the global
fishing amount (Angnew et al., 2009); thus damages
26 to 50 billion USD on the global fishing economy
(Sumaila et al., 2020). Therefore, to protect the marine
resources it is necessary to continuously surveillance
the sea with special consideration on managing IUU
fishing activities (Angnew et al., 2009; Pelich et al.,
2019; Sumaila et al., 2020).

To prevent IUU, countries usually operate vessel
monitoring system (VMS) to conduct marine surveillance
activities (Angnew et al., 2009; Pelich et al., 2019;
Sumaila et al., 2020). Particularly, in Korea Automatic
Identification System (AIS), V-Pass, and VHF-DSC
installed on ships are used to monitor offshore ship
activities (Hong and Yang, 2014; Kim et al., 2016;
Hong et al., 2018; Jeon and Jung, 2018; Jeon and Yang,
2021; Cho and Choi, 2018; Han et al., 2021; Lee et al.,
2021).

There are a number of research works on AIS-based
differentiation of ships’ fishing activities. On the
contrary, there are still little works on vessels’ fishing
activity differentiation using the V-Pass data. However,
it is necessary to monitor fishing activity status from
small fishing vessels for proper monitoring, which
triggers the necessity of such works by using the readily
accessible V-Pass data. Park et al. (2021) differentiated
fishing status from non-fishing status on the basis of
course and speed of the small fishing vessels’ V-Pass
data, but didn’t considered for differentiation among
the types of fishing status. The analysis of fishing
activities was performed according to the absolute
classification of the ship’s position, speed and course

based on simple spatial statistics, and did not reflect 
the changing fishing activity of the actual vessel. They
did it by applying Hidden Markov Model (HMM) on
V-Pass data. HMM is a model to determine status
through probability distribution for a sequence of time-
series data. However, that study did not considered
differentiation of fishing types from each other. For
instance, in the sea around Busan and other locations
of Korea, there are many small fishing vessels which
use longlines for harvesting various types of fishes and
squids (Kitakado et al., 2020; Kitakado et al., 2021a,
2021b; Kim et al., 2012; Satoh et al., 2020; Gil and
Palmason, 2005). Therefore, in this study we have
proposed an improvement to that HMM model to
distinguish this longlining from other types of fishing
activities. For the convenience of description any types
of fishing done by small fishing vessels other than
longlining henceforth will be referred to as other
fishing.

2. Study area and data

V-Pass is a wireless device that automatically
transmits data from ship, and according to the Fishing
Vessels Act in Korea that device should be installed 
in small fishing vessels where AIS is not installed (Lee
et al., 2021). V-Pass provides vessel identification
number, location (coordinates), speed over ground,
course over ground (COG), etc. and thus contributing
a lot to monitor fishing vessels. Usually, ship navigation
information is transmitted every 10 min or less in V-
Pass (Lee et al., 2021). In this study, V-Pass data were
collected for the coverage of Busan (128.5-130.0°E,
34.5-35.5°N) on 05 February, 2021 as shown in Fig. 1.
The V-Pass collection system is located at Korea
Institute of Ocean Science & Technology (KIOST),
Busan, Korea, and also operated and maintained by
KIOST. The coverage of V-Pass data collected from the
fishing vessels are limited to coastal areas within 35 km
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radius from the receiving antenna which is placed only
around 0.2 km inside from the coastline (red point in
Fig. 1). The V-Pass data are received in real-time as
encrypted packet information, converted to usable text
information, and automatically transmitted to the data
collection computer through serial port. Finally, from
the data collection computer these data are stored in the
PostgreSQL database through the Secure Shell (SSH)
port at KIOST internal network facilities.

The collected V-Pass data consist of a sequence of
time-series data comprising 9 variables, viz. unique
identification number, time, longitude and latitude,
heading, speed, license type, SOS status, etc. of fishing
vessels. Among those, speed and location are the key
elements to assess fishing vessel activities. The interval
of V-Pass data ranged from 1 second to 2 minutes, and
thus signals for 14,117 instances from 206 fishing
vessels on 05 February, 2021 were used in this study.

Prior to using the received V-Pass data, noise data (a
few locations showing on land for only one ship) were
removed by land masking. Moreover, vessels arriving
on/departing from harbour were out of our interest as
were not in a status of fishing operations. Thus, the
vessels within 1 km distance from the port were also
eliminated by adding buffer to the land mask during
land masking.

3. Methodology

In this study we have predicted the fishing activity
through the HMM based on the speed and behaviour
of each fishing vessel. HMM assumes unknown
parameters and classifies the unknown parameters 
from the observable parameters. The model has been
applied in various fields such as bioinformatics, voice
recognition, character recognition, etc. by using a
number of machine learning algorithms (Franzese and
Luliano, 2018). In particular, V-Pass data for Busan
Port area were labelled and applied to HMM, targeting
the longline fishery and other fisheries that are extensively
conducted in the study area. The classification procedure
is improved compared to the method presented by Park
et al. (2021) by applying the proposed two tired HMM:
the primary (non-fishing, fishing) model, and the
secondary (longlining, and other fishing) model. The
major steps are shown in a simplified flowchart (Fig.
2). The first step is labelling all (training and test) data
into three groups of fishing activity status. Here, it can
be seen that the class, longlining activity, is newly
added in the current model compared to that of previous
model. Then, the data is split into training and test data
which are primarily divided to fishing and non-fishing
status at first step of HMM, and further differentiated
based on the fishing methods. Finally, the test results
are compared with the truth data to estimate the level
of accuracy.

In this study, at first pre-processed V-Pass information
from all 206 small fishing vessels were primarily
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Fig. 1.  Study area in Korea is shown by red circle in the
left map. V-Pass based trajectories (blue lines) of
206 small fishing vessels inside the study area on
05 February, 2021 are shown in the right map. The
red dot and the arc represent the location of the 
V-Pass receiving antenna in KIOST and V-Pass
receiving antenna coverage in the sea, respectively.

Fig. 2.  Flowchart for prediction of fishing activities using
HMM model.



classified and labelled into three categories namely
non-fishing, longlining and other fishing (Fig. 2). From
the labelled data 193 ships (4 longlining ships, 189
other fishing ships) were used for training and 13 ships
(2 longlining ships, 11 other fishing ships) were used
for testing the model. Based on those training data, the
non-fishing and fishing status were predicted using the
first-order HMM probabilistic model. The first-order
results for fishing status thus produced were used in the
second HMM probabilistic model to further divide it
into two types of activities, longlining and other fishing.

1) Labelling
Park et al. (2021) classified the fishing vessels’ status

as non-fishing and fishing. Here, we have further
classified the fishing status as longlining and other
types of fishing based on speed and trajectory of fishing
vessels with the opinion of some long experienced
fishing vessel captains. One example of longlining
from one fishing vessel is shown in Fig. 3 where red,
green and blue circles indicate the longlining, other
fishing and non-fishing statuses, respectively, and 
the lines show the trajectories. In Fig. 3(a) specific
movement patterns can be observed in the form of
sharp changes in shift towards almost opposite direction
after a certain distance and period (here from east 
to west and south to north) to repeat the setting of
longlines. On the contrary, different types of movements
are observed in case of other fishing. Such an instance
is shown in Fig. 3(b) where irregular and relatively
straight patterns of shifts are observed. In contrast to
these, shift of vessels with less changes in the course
direction (Kim and Lee, 2020) is considered as non-
fishing status (streaming or waiting for hauling).

Fig. 4 shows the velocity distribution graphs of ships
which were also considered for classifying the ships
into three categories of fishing status for labelling
purpose. Though the velocity data are in integer form,
in order to produce a smooth histogram kernel density
estimation (Wand and Jones, 1995) is applied to 
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Fig. 4.  Speed distribution of all fishing vessels according
to their labelled fishing status.

Fig. 3.  Example of movement patterns of fishing vessels
for labelling purpose: (a) longlining vs. non-fishing,
and (b) other fishing vs. non-fishing.



the data values. The bandwidth according to each
classification was applied by finding the optimal
bandwidth size according to the number of data in the
Gaussian kernel function. First, the speed distribution
of non-fishing activity found to be highest at 10 knots
(highest peak of the blue line-graph) whereas
discriminated from fishing activities at about 5 knots
(indicated by blue arrow). Although the speed distribution
of longlining and other fishing show some similarities
in skewness and modes for peaks and troughs at 5
distinct peaks among 0 to 4 knots, the longlining showed
much high peaks and steep troughs compared to those
of other fishing due to sudden change in speed caused
by abrupt changes in the direction of vessels. These
were considered during setting the classification number
and range for speed distribution in HMM probability
model structure.

2) HMM
In HMM the probability of specific states (called

hidden states) is calculated by using the emission and
transition probability from the time-series and states-
labelled data (Franzese and Luliano, 2018; Park et al.,
2021). The concept of this model is to assuming that
the current observation (Ot) is the result of the current
hidden state (Ht), and Ht is independent of the previous
state (Ht-1) (Park et al., 2021; Souza et al., 2016).
Equation 1 shows the formula for calculating the HMM
probabilistic model. The probabilities of emission and
transition are defined as P(Ot |Ht) and P(Ht |Ht-1),
respectively (Park et al., 2021).

The structure of the HMM probabilistic model
constructed by using the learning data is schematically
shown in Fig. 5. Here, in both steps observations were
grouped into 5 range categories according to the speed
distribution. The probabilities of emission and transition
computed from labelled data are the key characteristic
for operation. Fig. 5(a) shows the structure of the non-
fishing/fishing HMM prediction model using V-Pass
data of 193 ships, and Fig. 5(b) shows the longlining

and other fishing HMM prediction model for those data
identified as fishing status in Fig. 5(a). Here, Ht were
set for each fishing activity according to Fig. 5(a) and
5(b). Hidden states consist of fishing activity statuses,
and observation sequences consist of 5 different ranges
of speeds.

P(H1:T | O1:T) = P(H1)P(O1 | H1) ∏T
t=2P(Ot | Ht)

P(P(Ht | Ht-1)                               (1)

Here,
P = Probability
H = Hidden states (non-fishing, longlining, 

and other fishing)
O = Observation (speed)

The transition probability is defined as the probability
of a hidden state in the previous step (t) become a
hidden state in the current step (t+1) (Park et al., 2021).
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Fig. 5.  HMM probability model structure with five ranges of
speed as observation sequences: (a) 1st step of
HMM for distinguishing fishing status from non-
fishing status, (b) 2nd step of HMM for distinguishing
the longlining from other fishing.



Transition probability requires an initial setting, but
since there is no way to discriminate longlining and
other fishing through the starting value (speed), the
probability of the initial setting was set to 0.5 for both
classes as shown in Table 1.

Table 2 shows the calculation of the transition
probability between each fishing behaviour. From the
result of transition probability between non-fishing and
fishing, the probability of moving to the same type of
fishing activity was found to be higher than 90%. Since
the two fishing types are fully different and do not
interact with each other, the probability of transitioning
to the same type was set to 100% and the probability
of transitioning to a different types of fishing activity
was set to 0%.

Emission probability means the probability of
observation which was calculated from the hidden
states. The emission probability was calculated for 
each type of fishing activities as shown in Table 3.
Setting the classification number and range of status 

of emission probability is crucial for extracting 
the characteristics of each fishing activity. During
determining the number of classification for emission
status, using a relatively small number of divisions like
2-4 divisions in our cases are found to degrade the
HMM performance in distinguishing fishing activity as
because each division includes a wide range of speeds.
Using a relatively large number of classifications, such
as 6 classifications or more could not increase the
performance as well. Thus, after several trials the 
best result was achieved from 5 classes. The velocity
range for emission probability was divided by applying
the K-mean clustering technique, which showed 
better performance than dividing the speed range at
equal intervals. Thus, after applying several trials we
determined the best suited ranges for the 5 classes as 
0 to 3 knot, more than 3 knot to less than 7 knot, 7 to
less than 11 knot, 11 to less than 14 knot, and 14 knot
to above (Fig. 5).

Korean Journal of Remote Sensing, Vol.38, No.1, 2022

– 78 –

Table 1.  Initial setting of transition probability
Ratio (probability)

Non-fishing Fishing Longlining Other fishing
0.5 (50%) 0.5 (50%) 0.5 (50%) 0.5 (50%)

Table 2.  Transition probability from training data

t + 1
t

Position counts (probability) t + 1
t

Positon counts (probability)
Non-fishing Fishing Longlining Other fishing

Non-fishing 3,999 (93.59%) 274 (6.41%) Longlining 1,706 (100%) 40 (0%)
Fishing 264 (2.68%) 9,580 (97.32%) Other types of fishing 0 (0%) 8,115 (100%)

Table 3.  Emission probability from training data

Observation sequences
Position counts (probability)

Non-fishing Fishing Longlining Other fishing
First 483 (11.48%) 8,643 (87.21%) 1,637 (91.15%) 7,006 (86.33%)

Second 319 (7.58%) 724 (7.31%) 69 (3.84%) 655 (8.07%)
Third 2,708 (64.38%) 397 (4.01%) 25 (1.39%) 372 (4.58%)
Fourth 502 (11.94%) 124 (1.25%) 43 (2.39%) 81 (1.00%)
Fifth 194 (4.61%) 23 (0.23%) 22 (1.22%) 1 (0.01%)

Sub-total 4,206 9,911 1,796 8,115



4. Results and discussion

The performance of generated HMM was evaluated
in terms of accuracy (%) by applying the Equation 2.
The derived value of accuracy represents the degree 
of closeness of measurements of a quantity to that
quantity’s true value. Four parameters, viz. True Positive
(TP), True Negative (TN), False Positive (FP) and 
False Negative (FN) were used in this equation. These
parameters were calculated by comparing the labels 
of actual and prediction. TP was considered when 
both actual data and prediction results were positive,
whereas TN was considered when both the actual data
and prediction results were negative. FP means that
actual data is negative, but the prediction result is
positive, whereas FN means the opposite (Park et al.,
2021).

Accuracy (%) = ×100           (2)

Tables 4 and 5 show the confusion matrix and
accuracy results, respectively for actual and prediction
for the three fishing behaviours. The confusion matrix
of status classification for multiple vessels explains the
performance, showing that in the prediction 113
instances mismatched as non-fishing and 130 instances
mismatched as longlining and other fishing. However,

the performance was around 90% for the first step and
86% for the second step of HMM.

The test data set for verification was done by random
selection of 13 fishing vessels (2 longlining and 11
other fishing vessels) out of total 206 ships. The
prediction result is visualized in a map (Fig. 6) for
analysing comparison with actual fishing activity
classification. Fishing/non-fishing prediction results
shows high accuracy of 90.45%. Although ratio of
correct prediction was high in the entire research area,
some mispredictions (TN) were found at the entrance
of Busan Port where density of fishing vessels was very
high in that narrow entrance (downward facing arrow

TP+TN
TP+TN+FP+FN
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Table 4.  Confusion matrix of HMM application by each
fishing activity using test dataset

Test dataset
Prediction

Non-fishing Other fishing Longlining

Actual
Non-fishing 372 130 –
Other fishing 113 1,286 288
Longlining – 0 485

Table 5.  Accuracy calculation results for actual and
prediction

Classification Accuracy (%)
Non-fishing/fishing 90.45

Longlining/other fishing 86.01
Non-fishing/longlining/other fishing 88.23

Fig. 6.  Comparison of fishing activity classification between
(a) labelling data, and (b) validation of prediction
results for 13 fishing vessels.



in Fig. 6(b)). Another example of misprediction due to
missing location and speed information during the long
time interval in that ship’s V-Pass data is indicated by
the north-east facing arrow in Fig. 6(b). However, in
this study we have ignored these few misprediction
problems and considered for solving in future works
through including other parameters like COG. In
contrast to the result of fishing/non-fishing prediction
results, it was found that the longlining has some
mispredictions (FP) in the densely populated fishing
area (downward facing arrow in Fig. 6(b)), and thus
longlining and other fishing predictions resulted in a
relatively little lower accuracy of 86.01% compared to
the predications at first step of HMM. Hu et al. (2016)
found 88.7% average accuracy in case of identifying
fishing activities using AIS data. Souza et al. (2016)
achieved average detection accuracies of 83% for
trawler and longline vessels, and 97% for purse seiner
by applying data mining and machine learning on
satellite AIS. Park et al. (2021) included the same 
V-Pass data from Socheongcho Ocean Research
Station both in training and test datasets, and thus
achieved 99.43% performance accuracy. However, in
this study no training and test data were overlapped,
and as a whole HMM probabilistic models showed
88.23% overall accuracy for the 3 classifications of
fishing activities.

5. Conclusion

In the fishing industry it is crucial step to prevent
IUU fishing and overfishing. The existing VMS system
allows the Vessel Traffic Service officers to observe 
the ship movements in real-time. The proposed fishing
gear type identification method allows identification 
of fishing activities of small fishing vessels from their
speed. There is a HMM based fishing and non-fishing
determining method from V-Pass data. Therefore, we
have improved that method to further differentiate 

the longlining activities from other types of fishing
activities. We have applied that method with suitable
number of training and test data. Thus, we have found
that our method can differentiate longlining activities
with 86% accuracy. Thus, this method of fishing
activity differentiation can be used by the coast guard
and researches to identify the longlining activity which
will be helpful for predicting the fishing pressure to 
the related fishing and control overfishing as well 
as IUU fishing if done by fishing vessels not allowed
for that type of fishing. Moreover, this method could
be also applied by the researchers to estimate the
correlation between depletion of fish catches and
longlining by small fishing vessels. In future we would
like to continue effort in this field of research to achieve
higher accuracy as well as differencing other types of
fishing activities by incorporating other attributes 
from V-Pass data.
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