DOI QR코드

DOI QR Code

Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water

점착 유층과 계면활성제 액적의 충돌에 의한 에멀젼 형성

  • Donghoon, Lee (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Dohyung, Kim (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Ildoo, Kim (Department of Mechatronics, Konkuk University) ;
  • Jinkee, Lee (School of Mechanical Engineering, Sungkyunkwan University)
  • Received : 2022.10.21
  • Accepted : 2022.10.26
  • Published : 2022.11.30

Abstract

We present an experimental investigation on emulsions created during the impact process between a surfactant-laden droplet and an oil layer on water. By varying the surfactant concentration and the viscosity of oil layer, we created emulsions and visualized them using multi-dimensional high-speed imaging. Our analysis shows that the emulsions are more likely to be unstable and decay within a minute if the impacting droplet contains more surfactant. We also found that there are three mechanisms of generation of emulsions depending on the concentration of surfactant and the viscosity of oil layer; the jet pinch-off, cavity pinch-off, and tearing of oil layer. Jet and cavity pinch-off turned out to be dominant mechanisms for high oil viscosities, while tearing of oil layer is dominant for low oil viscosities. Our result is potentially useful in designing optimal dispersant properties for offshore oil contamination.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행하였으며 (No. 2020R1A2C3010568, No. 2021R1C1C1010158), 교육부의 재원으로 한국연구재단의 지원을 받아 기초연구사업 (No. 2021R1A6A1A03039696)으로 수행되었음. 또한, 환경부의 재원으로 한국환경산업기술원의 생태모방 기반 환경오염관리 기술개발사업의 지원을 받아 연구가 수행되었음 (2019002790003).

References

  1. Worthington, A. M., 1877, "XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate," Proceedings of the royal society of London, 25(171-178), 261-272. https://doi.org/10.1098/rspl.1876.0048
  2. Worthington, A. M., 1883, "On impact with a liquid surface," Proceedings of the Royal Society of London, 34(220-223), 217-230.
  3. Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface. Physics of fluids, 8(3), 650-659. https://doi.org/10.1063/1.868850
  4. Castillo-Orozco, E., Davanlou, A., Choudhury, P. K., & Kumar, R. (2015). Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets. Physical Review E, 92(5), 053022. https://doi.org/10.1103/PhysRevE.92.053022
  5. Michon, G. J., Josserand, C., & Seon, T. (2017). Jet dynamics post drop impact on a deep pool. Physical review fluids, 2(2), 023601. https://doi.org/10.1103/PhysRevFluids.2.023601
  6. Ferreira, A. G., & Singer, M. J. (1985). Energy dissipation for water drop impact into shallow pools. Soil Science Society of America Journal, 49(6), 1537-1542. https://doi.org/10.2136/sssaj1985.03615995004900060041x
  7. Fan, X., Wang, C., Guo, F., Chen, B., & Li, M. (2021). Water droplet impact on high-temperature peanut oil surface: The effects of droplet diameter and oil temperature. International Journal of Thermal Sciences, 159, 106601. https://doi.org/10.1016/j.ijthermalsci.2020.106601
  8. Gielen, M. V., Sleutel, P., Benschop, J., Riepen, M., Voronina, V., Visser, C. W., ... & Gelderblom, H. (2017). Oblique drop impact onto a deep liquid pool. Physical review fluids, 2(8), 083602. https://doi.org/10.1103/PhysRevFluids.2.083602
  9. Jain, U., Jalaal, M., Lohse, D., & van der Meer, D. (2019). Deep pool water-impacts of viscous oil droplets. Soft matter, 15(23), 4629-4638. https://doi.org/10.1039/c9sm00318e
  10. Zheng, L., Cao, C., Cao, L., Chen, Z., Huang, Q., & Song, B. (2018). Bounce behavior and regulation of pesticide solution droplets on rice leaf surfaces. Journal of agricultural and food chemistry, 66(44), 11560-11568. https://doi.org/10.1021/acs.jafc.8b02619
  11. Pasandideh-Fard, M., Chandra, S., & Mostaghimi, J. (2002). A three-dimensional model of droplet impact and solidification. International Journal of Heat and Mass Transfer, 45(11), 2229-2242. https://doi.org/10.1016/S0017-9310(01)00336-2
  12. WORTHINGTON, A. M. 1908 A Study of Splashes. Longmans Green.
  13. Josserand, C., & Thoroddsen, S. T. (2016). Drop impact on a solid surface. Annual review of fluid mechanics, 48(1), 365-391. https://doi.org/10.1146/annurev-fluid-122414-034401
  14. Smith, D. B., Askew, S. D., Morris, W. H., Shaw, D. R., & Boyette, M. (2000). Droplet size and leaf morphology effects on pesticide spray deposition. Transactions of the ASAE, 43(2), 255. https://doi.org/10.13031/2013.2700
  15. Murphy, D. W., Li, C., d'Albignac, V., Morra, D., & Katz, J. (2015). Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks. Journal of Fluid Mechanics, 780, 536-577. https://doi.org/10.1017/jfm.2015.431
  16. Kim, D., Lee, J., Bose, A., Kim, I., & Lee, J. (2021). The impact of an oil droplet on an oil layer on water. Journal of Fluid Mechanics, 906.
  17. Pumphrey, H. C., & Elmore, P. A., "The entrainment of bubbles by drop impacts," Journal of Fluid Mechanics, 220, 539-567, 1990. https://doi.org/10.1017/S0022112090003378
  18. Wang, W., Ji, C., Lin, F., Wei, X., & Zou, J. (2019). Formation of water in oil in water particles by drop impact on an oil layer. Physics of Fluids, 31(3), 037107. https://doi.org/10.1063/1.5089001
  19. Ni, Z., Chu, F., Feng, Y., Yao, S., & Wen, D. (2021). Large-Scale Dewetting via Surfactant-Laden Droplet Impact. Langmuir, 37(46), 13729-13736. https://doi.org/10.1021/acs.langmuir.1c02456
  20. Cai, Z., Wang, B., Liu, S., Li, H., Luo, S., Dong, Z., ... & Jiang, L. (2022). Beating Worthington jet by surfactants. Cell Reports Physical Science, 3(3), 100775.
  21. Li, P., Cai, Q., Lin, W., Chen, B., & Zhang, B., 2016, "Offshore oil spill response practices and emerging challenges," Marine pollution bulletin, 110(1), 6-27. https://doi.org/10.1016/j.marpolbul.2016.06.020
  22. Aytouna, M., Bartolo, D., Wegdam, G., Bonn, D., & Rafai, S. (2010). Impact dynamics of surfactant laden drops: dynamic surface tension effects. Experiments in fluids, 48(1), 49-57. https://doi.org/10.1007/s00348-009-0703-9