DOI QR코드

DOI QR Code

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat (Karadeniz Technical University, Department of Civil Engineering) ;
  • Erturk, Esin (Karadeniz Technical University, Department of Civil Engineering) ;
  • Genc, Ali Fuat (Karadeniz Technical University, Department of Civil Engineering) ;
  • Okur, Fatih Yesevi (Karadeniz Technical University, Department of Civil Engineering) ;
  • Altunisik, Ahmet Can (Karadeniz Technical University, Department of Civil Engineering) ;
  • Tavsan, Cengiz (Karadeniz Technical University, Department of Civil Engineering)
  • Received : 2019.07.05
  • Accepted : 2021.08.11
  • Published : 2022.01.25

Abstract

This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Keywords

References

  1. Abaqus (2016), Dassault syst'emes simulia corp, Providence: Rhode Island, U.S.A.
  2. Adanur, S. (2010), "Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey", Nat. Hazard. Earth. Sys., 10(12), 2547-2556. https://doi.org/10.5194/nhess-10-2547-2010.
  3. Allemang, R.J. (2003), "The modal assurance criterion: Twenty years of use and abuse", Sound Vib., 37(8), 14-23.
  4. Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Karahasan, O. (2018d), "Automated model updating effect on the linear and nonlinear dynamic responses of historical masonry structures", Exp. Tech., 42(6), 605-621. https://doi.org/10.1007/s40799-018-0271-0.
  5. Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2017), "An investigation of the seismic behaviour of an ancient masonry bastion using non-destructive and numerical methods", Exp. Mech., 57, 245-259. https://doi.org/10.1007/s11340-016-0239-x.
  6. Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2016), "Non-destructive testing of an ancient masonry bastion", J. Cult. Herit., 22, 1049-1054. https://doi.org/10.1016/j.culher.2016.05.008.
  7. Altunisik, A.C., Genc, A.F., Gunaydin, M., Adanur, S. and Okur, F.Y. (2018a), "Ambient vibration-based system identification of a medieval masonry bastion for health assessment using nonlinear analyses", Int. J. Nonlinear Sci., 19(2), 107-124. https://doi.org/10.1515/ijnsns-2017-0004.
  8. Altunisik, A.C., Genc, A.F., Gunaydin, M., Okur, F.Y. and Karahasan, O.S. (2018b), "Dynamic response of a historical armory building using the finite element model validated by the ambient vibration test", J. Vib. Control, 24(22), 5472-5484. https://doi.org/10.1177/1077546318755559.
  9. Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Adanur, S. (2018c), "Automated model updating of historical masonry structures based on ambient vibration measurements", J. Perform. Constr. Fac., 32(1), 04017126. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001108.
  10. Aras, F., Krstevska, L., Altay, G. and Tashkov, L. (2011), "Experimental and numerical modal analyses of a historical masonry palace", Constr. Build. Mater., 25(1), 81-91. https://doi.org/10.1016/j.conbuildmat.2010.06.054.
  11. Bayraktar, A. and Hokelekli, E. (2020), "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems", Soil Dynam. Earthq. Eng., 139, 106368. https://doi.org/10.1016/j.soildyn.2020.106368.
  12. Bayraktar, A., Hokelekli, E., Halifeoglu, F.M., Mosallam, A. and Karadeniz, H. (2018), "Vertical strong ground motion effects on seismic damage propagations of historical masonry rectangular minarets", Eng. Fail. Anal., 91, 115-128. https://doi.org/10.1016/j.engfailanal.2018.04.029.
  13. Bayraktar, A., Turker, T. and Altunisik, A.C. (2015), "Experimental frequencies and damping ratios for historical masonry arch bridges", Constr. Build. Mater., 75, 234-241. https://doi.org/10.1016/j.conbuildmat.2014.10.044.
  14. Bayraktar, A., Turker, T., Sevim, B., Altunisik, A.C. and Yildirim, F. (2009), "Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test", J. Nondestruct. Eval., 28(1), 37-47. https://doi.org/10.1007/s10921-009-0045-9.
  15. Bendat, J.S. and Piersol, A.G. (2004), Random Data: Analysis and Measurement Procedures, John Wiley and Sons, U.S.A.
  16. Betti, M. and Vignoli, A. (2008), "Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance", Eng. Struct., 30(2), 352-367. https://doi.org/10.1016/j.engstruct.2007.03.027.
  17. Betti, M. and Vignoli, A. (2011), "Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all'Impruneta (Italy)", Constr. Build. Mater., 25(12), 4308-4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028.
  18. Bolhassani, M., Hamid, A.A., Lau, A.C.W. and Moon, F. (2015), "Simplifed micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83, 159-173. https://doi.org/10.1016/j.conbuildmat.2015.03.021.
  19. Brown, S., Hwang, J.P. and Parker, A. (2012), "Assessment of masonry bell tower response to bell ringing using operational modal analysis and numerical modeling", Proceedings of Acoustics.
  20. Brownjohn, J.M., Xia, P.Q., Hao, H. and Xia, Y. (2001), "Civil structure condition assessment by FE model updating: Methodology and case studies", Finite Elem. Anal. Des., 37(10), 761-775. https://doi.org/10.1016/S0168-874X(00)00071-8.
  21. Butt, F. and Omenzetter, P. (2014), "Seismic response trends evaluation and finite element model calibration of an instrumented RC building considering soil-structure interaction and non-structural components", Eng. Struct., 65, 111-123. https://doi.org/10.1016/j.engstruct.2014.01.045.
  22. Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2005), "In situ damage assessment and nonlinear modelling of a historical masonry tower", Eng. Struct., 27(3), 387-395. https://doi.org/10.1016/j.engstruct.2004.11.001.
  23. Ceroni, F., Sica, S., Pecce, M.R. and Garofano, A. (2014), "Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI", Soil Dynam. Earthq. Eng., 64, 95-101. https://doi.org/10.1016/j.soildyn.2014.05.003.
  24. Corum Baris Sehri (2018), Corum Il Kultur ve Turizm Mudurlugu, http://www.corum.gov.tr/kurumlar/corum.gov.tr/Genel/corum_tanitim/gezirehberi.pdf.
  25. Damci, E., Temur, R., Bekdas, G. and Sayin, B. (2015), "Damages and causes on the structures during the October 23, 2011 Van earthquake in Turkey", Case Stud. Constr. Mater., 3,112-131. https://doi.org/10.1016/j.cscm.2015.10.001.
  26. Ewins, D.J. (1984), Modal Testing: Theory and Practice, Letchworth, Hertfordshire, England, Research Studies Press, New York.
  27. Felber, A.J. (1993), "Development of hybrid bridge evaluation system", Ph.D. Thesis, University of British Columbia, Vancouver, Canada.
  28. Garcia-Macias, E. and Ubertini, F. (2020), "Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy", Eng. Struct., 215, 110615. https://doi.org/10.1016/j.engstruct.2020.110615.
  29. General Directorate for Foundations (2017), Guide to the Management of Earthquake Risks of Historical Structures, Ankara, Turkey.
  30. General Directorate for Foundations (2018), Turkey Earthquake Building Code, TEBC-2018, Ankara, Turkey.
  31. Gentile, C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Build. Mater., 21(6), 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007.
  32. Gunaydin, M., Adanur, S. and Altunisik, A.C. (2019), "Experimental investigation on acceptable difference value in modal parameters for model updating using RC building models", Struct. Eng. Int., 29(1), 150-159. https://doi.org/10.1080/10168664.2018.1517019.
  33. Gunaydin, M., Adanur, S., Altunisik, A.C., Sevim, B. and Bayraktar, A. (2017), "Finite modeling updating effects on the dynamic response of building models", J. Test. Eval., 45(5), 2017,1630-1649. https://doi.org/10.1520/JTE20150515.
  34. Hokelekli, E. and Al-Helwani, A. (2019), "Effect of soil properties on the seismic damage assessment of historical masonry minaret-soil interaction systems", Struct. Des. Tall Spec., 29(2). https://doi.org/10.1002/tal.1694.
  35. Jacobsen, N.J., Andersen, P. and Brincker, R. (2006), "Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis", Proceedings of ISMA2006: International Conference on Noise & Vibration Engineering, Leuven, Belgium.
  36. Jain, A., Acito, M. and Chesi, C. (2020), "Seismic sequence of 2016-17: Linear and non-linear interpretation models for evolution of damage in San Francesco Church, Amatrice", Eng. Struct., 211, 397-421. https://doi.org/10.1016/j.engstruct.2020.110418.
  37. Jain, A., Acito, M., Chesi, C. and Magrinelli, E. (2019), "The seismic sequence of 2016-2017 in Central Italy: A numerical insight on the survival of the Civic Tower in Amatrice", B. Earthq. Eng., 18, 1371-1400. https://doi.org/10.1007/s10518-019-00750-w.
  38. Juang, J.N. (1994), Applied System Identification, Englewood Cliffs (NJ): Prentice-Hall Inc.
  39. Kramer, S.L. (1999), Geotechnical Earthquake Engineering, University of Washington, U.S.A.
  40. Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dynam., 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5.
  41. Leger, P. and Boughoufalah, M. (1989), "Earthquake input mechanisms for time-domain analysis of dam-foundation systems", Eng. Struct., 11(1), 37-46. https://doi.org/10.1016/0141-0296(89)90031-X.
  42. Li, T. and Atamturktur, S. (2014), "Fidelity and robustness of detailed micromodeling, simplified micromodeling, and macromodeling techniques for a masonry dome", J. Perform. Constr. Fac., 28(3), 480-490. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000440.
  43. Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Thesis, Delft University of Technology, Delft, Netherland.
  44. Lourenco, P.B. (2002), "Computations on historic masonry structures", Prog. Struct. Eng. Mater., 4(3), 301-319. https://doi.org/10.1002/pse.120.
  45. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  46. Mohammadnezhad, H., Ghaemian, M. and Noorzad, A. (2019), "Seismic analysis of dam-foundation-reservoir system including the effects of foundation mass and radiation damping", Earthq. Eng. Eng. Vib., 18(1), 203-218. https://doi.org/10.1007/s11803-019-0499-4.
  47. Nohutcu, H. (2019), "Seismic failure pattern prediction in a historical masonry minaret under different earthquakes", Adv. Civil Eng., 2019(1), 1-16. https://doi.org/10.1155/2019/8752465.
  48. Nohutcu, H., Hokelekli, E., Ercan, E., Demir, A. and Altintas, G. (2017), "Collapse mechanism estimation of a historical slender minaret", Struct. Eng. Mech., 64(5), 653-660. https://doi.org/10.12989/sem.2017.64.5.653.
  49. OMA (2006), Release 4.0, Structural Vibration Solution A/S, Denmark.
  50. Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Thesis, Catholic University of Leuven, Leuven, Belgium.
  51. Peeters, B. and De Roeck, G. (1999), "Reference based stochastic subspace identification in civil engineering", Proceedings of the 2nd International Conference on Identification in Engineering Systems, Swansea, UK.
  52. Pena, F., Lourenco, P.B., Mendes, N. and Oliveira, D.V. (2010), "Numerical models for the seismic assessment of an old masonry tower", Eng. Struct., 32(5), 1466-1478. https://doi.org/10.1016/j.engstruct.2010.01.027.
  53. PULSE, A. and Solutions, R. (2006), 11.2, Bruel & Kjaer, Sound Vib. Meas. A/S, Denmark.
  54. Rainieri, C., Fabbrocino, G., Cosenza, E. and Manfredi, G. (2007), "Implementation of OMA procedures using labview: Theory and application". 2nd International Operational Modal Analysis Conference, Copenhagen, Denmark.
  55. Ramos, L.F., Aguilar, R. and Lourenco, P.B. (2011), "Operational modal analysis of historical constructions using commercial wireless platforms", Struct. Health Monit., 10(5), 511-521. https://doi.org/10.1177/1475921710388973.
  56. Ren, W.X., Penga, X. and Lina, Y. (2005), "Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge", Eng. Struct., 27(4), 535-548. https://doi.org/10.1016/j.engstruct.2004.11.013.
  57. Republic of Turkey Prime Ministry Disaster and Emergency Management Authority Presidential of Earthquake Department (2018), https://deprem.afad.gov.tr/depremkatalogu#.
  58. Resta, M., Fiore, A. and Monaco, P. (2013), "Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model", Adv. Struct. Eng., 16(5), 791-803. https://doi.org/10.1260/1369-4332.16.5.791.
  59. Romero, M., Pachon, P., Compan, V., Camara, M. and Pinto, F. (2018), "Operational modal analysis: A tool for assessing changes on structural health state of historical constructions after consolidation and reinforcement works-Jura Chapel (Jerez De La Frontera, Spain)", Shock Vib., 2018, 1-12. https://doi.org/10.1155/2018/3710419.
  60. Saisi, A., Gentile, C. and Guidobaldi, M. (2015), "Post-earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy", Constr. Build. Mater., 81, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.02.010.
  61. Saloustros, S., Pela, L., Roca, P. and Portal, J. (2015), "Numerical analysis of structural damage in the church of the Poblet monastery", Eng. Fail. Anal., 48, 41-61. https://doi.org/10.1016/j.engfailanal.2014.10.015.
  62. Sanayei, M. and Rohela, P. (2014), "Automated finite element model updating of full-scale structures with PARameter Identification System (PARIS)", Adv. Eng. Softw., 67, 99-110. https://doi.org/10.1016/j.advengsoft.2013.09.002.
  63. Sevim, B, Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlinear Dynam., 63(4), 755-770. https://doi.org/10.1007/s11071-010-9835-y.
  64. Sorour, M.M., Parsekian, G.A., Duchesne, D., Paquette, J., Mufti, A., Jaeger, L. and Shrive, N.G. (2009), "Evaluation of Young's modulus for stone masonry walls under compression", 11th Canadian Masonry Symposium, Toronto, Ontario.
  65. Tiberti, S., Acito, M. and Milani, G. (2016), "Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis", Eng. Struct., 117, 397-421. https://doi.org/10.1016/j.engstruct.2016.02.048.
  66. Turek, M., Ventura, C.E. and Placencia, P. (2002), "Dynamic characteristics of a 17th century church in Quito, Ecuador", Proceedings of SPIE, 4753(2), 1259-1264.
  67. Votsis, R.A., Kyriakides, N., Chrysostomou, C.Z., Tantele, E. and Demetriou, T. (2012), "Ambient vibration testing of two masonry monuments in Cyprus", Soil Dynam. Earthq. Eng., 43, 58-68. https://doi.org/10.1016/j.soildyn.2012.07.015.
  68. Wu, J.R. and Li, Q.S. (2004), "Finite element model updating for a high-rise structure based on ambient vibration measurements", Eng. Struct., 26(7), 979-990. https://doi.org/10.1016/j.engstruct.2004.03.002.