DOI QR코드

DOI QR Code

혼합대 흐름이 지표수 내 용질거동에 미치는 영향 수치모의 분석

Numerical analysis of the hyporheic flow effect on solute transport in surface water

  • 김준성 (국토연구원 국토환경.자원연구본부)
  • Kim, Jun Song (Environment and Resources Research Division, Korea Research Institute for Human Settlements)
  • 투고 : 2021.10.07
  • 심사 : 2021.11.19
  • 발행 : 2022.01.31

초록

본 연구는 지표수-지하수 연계 2차원 흐름 및 용질거동 수치모의를 통해 혼합대 흐름에 의한 지표수-하상 경계층 용질교환이 지표수 내 용질거동에 미치는 영향을 분석하였다. 먼저, 혼합대 흐름이 부재한 불투수성 하상의 경우 사련 하상파에 의해 발달한 바닥면 근처 재순환 흐름의 포착 효과가 용질 파과곡선 형태를 결정하였다. 반면, 용질이 혼합대로 유입되는 투수성 하상에서는 지표수 대비 유속이 느린 혼합대 흐름에 의해 파과곡선 꼬리 부분 농도가 증가하여 파과곡선 꼬리 연장이 급격히 증가하였다. 또한, 지표수 유속 증가는 바닥면 압력 상승과 함께 혼합대 흐름을 빠르게 하여 파과곡선 꼬리의 연장을 단축시켰다. 이러한 본 연구의 결과는 지표수 내 용질 체류시간 예측에 있어 혼합대 흐름의 중요성을 시사하는 바이다.

This paper performs two-dimensional numerical simulation of surface water-groundwater coupled flow and solute transport to investigate the effect of the hyporheic exchange at the sediment-water interface (SWI) on surface solute transport. For the impermeable bed case in the absence of hyporheic flow, the trapping effect of flow recirculation associated with the ripple bed controls the shape of breakthrough curves (BTCs). However, the permeable bed case with hyporheic flow stimulates the extended tailing of the BTCs more significantly due to the elevated concentration of the BTC tailing resulting from slow hyporheic velocity. Also, the increased bottom pressure at the SWI with an increase in surface velocity shortens the BTC tailing because of increasing hyporheic velocity. These results infer that hyporhiec flow is critically important in predicting solute residence times in surface water.

키워드

과제정보

본 연구는 국토연구원의 연구비 지원에 의하여 수행되었습니다.

참고문헌

  1. Ahn, M., Kim, Y., Ji, U., Gu, J., Ko, J., Bae, I., and Kang, H. (2019). "Measurement and analysis of nitrous oxide emissions over time around a dune in the experimental flume." Journal of Korean Society of Environmental Engineers, Vol. 41, No. 4, pp. 228-234. https://doi.org/10.4491/ksee.2019.41.4.228
  2. Alavian, V. (1986). "Dispersion tensor in rotating flows." Journal of Hydraulic Engineering, Vol. 112, No. 8, pp. 771-777. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:8(771)
  3. Anderson, E.I. (2003). "An analytical solution representing groundwater - surface water interaction." Water Resources Research, Vol. 39, No. 3.
  4. Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H., and Valett, H.M. (1998). "The functional significance of the hyporheic zone in streams and rivers." Annual Review of Ecology and Systematics, Vol. 29, No. 1, pp. 59-81. https://doi.org/10.1146/annurev.ecolsys.29.1.59
  5. Cardenas, M.B., and Wilson, J.L. (2007). "Dunes, turbulent eddies, and interfacial exchange with permeable sediments." Water Resources Research, Vol. 43, No. 8.
  6. Cardenas, M.B., Wilson, J.L., and Haggerty, R. (2008). "Residence time of bedform-driven hyporheic exchange." Advances in Water Resources, Vol. 31, No. 10, pp. 1382-1386. https://doi.org/10.1016/j.advwatres.2008.07.006
  7. Chen, X., Cardenas, M.B., and Chen, L. (2015). "Three dimensional versus two-dimensional bed form induced hyporheic exchange." Water Resources Research, Vol. 51, No. 4, pp. 2923-2936. https://doi.org/10.1002/2014WR016848
  8. Drummond, J.D., Covino, T.P., Aubeneau, A.F., Leong, D., Patil, S., Schumer, R., and Packman, A.I. (2012). "Effects of solute breakthrough curve tail truncation on residence time estimates: A synthesis of solute tracer injection studies." Journal of Geophysical Research: Biogeosciences, Vol. 117, No. G3.
  9. Findlay, S. (1995). "Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone." Limnology and Oceanography, Vol. 40, No. 1, pp. 159-164. https://doi.org/10.4319/lo.1995.40.1.0159
  10. Freeze, R.A., and Cherry, J.A. (1979). Groundwater. PrenticeHall, Englewood Cliffs, NJ, U.S.
  11. Haggerty, R., Wondzell, S.M., and Johnson, M.A. (2002). "Power law residence time distribution in the hyporheic zone of a 2nd order mountain stream." Geophysical Research Letters, Vol. 29, No. 13, pp. 18-1-18-4. https://doi.org/10.1029/2002GL014743
  12. Harleman, D.R.F., and Rumer, R.R. (1963). "Longitudinal and lateral dispersion in an isotropic porous medium." Journal of Fluid Mechanics, Vol. 16, No. 3, pp. 385-394. https://doi.org/10.1017/S0022112063000847
  13. Harvey, J., and Gooseff, M. (2015). "River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins." Water Resources Research, Vol. 51, No. 9, pp. 6893-6922. https://doi.org/10.1002/2015WR017617
  14. Janssen, F., Cardenas, M.B., Sawyer, A.H., Dammrich, T., Krietsch, J., and de Beer, D. (2012). "A comparative experimental and multiphysics computational fluid dynamics study of coupled surface - subsurface flow in bed forms." Water Resources Research, Vol. 48, No. 8.
  15. Jin, G., Zhang, Z., Li, R., Chen, C., Tang, H., Li, L., and Barry, D.A. (2020). "Transport of zinc ions in the hyporheic zone: Experiments and simulations." Advances in Water Resources, Vol. 146, 103775. https://doi.org/10.1016/j.advwatres.2020.103775
  16. Kim, J.S., and Kang, P.K. (2020). "Anomalous transport through free-flow-porous media interface: Pore-scale simulation and predictive modeling." Advances in Water Resources, Vol. 135, 103467. 10.1016/j.advwatres.2019.103467
  17. Kim, J.S., Seo, I.W., Baek, D., and Kang, P.K. (2020). "Recirculating flow-induced anomalous transport in meandering open-channel flows." Advances in Water Resources, Vol. 141, 103603. https://doi.org/10.1016/j.advwatres.2020.103603
  18. Lee, A., Aubeneau, A.F., and Cardenas, M.B. (2020). "The sensitivity of hyporheic exchange to fractal properties of riverbeds." Water Resources Research, Vol. 56, No. 5, e2019WR026560.
  19. Li, B., Liu, X., Kaufman, M.H., Turetcaia, A., Chen, X., and Cardenas, M.B. (2020). "Flexible and modular simultaneous modeling of flow and reactive transport in rivers and hyporheic zones." Water Resources Research, Vol. 56, No. 2, e2019WR026528.
  20. Marzadri, A., Tonina, D., and Bellin, A. (2012). "Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate-bar morphology." Journal of Geophysical Research: Biogeosciences, Vol. 117, No. G3.
  21. Marzadri, A., Tonina, D., Bellin, A., and Valli, A. (2016). "Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow." Advances in Water Resources, Vol. 88, pp. 139-151. https://doi.org/10.1016/j.advwatres.2015.12.014
  22. Menter, F.R. (1993). "Zonal two-equation k-ω turbulence model for aerodynamic flows." Proceedings of AIAA 24th Fluid Dynamic Conference, AIAA Paper 93-2906, Orlando, FL, U.S.
  23. Moltyaner, G.L., and Killey, R.W.D. (1988). "Twin lake tracer tests: Transverse dispersion." Water Resources Research, Vol. 24, No. 10, pp. 1628-1637. https://doi.org/10.1029/WR024i010p01628
  24. Motamedi, A., Afzalimehr, H., Singh, V.P., and Dufresne, L. (2014). "Experimental study on the influence of dune dimensions on flow separation." Journal of Hydrologic Engineering, Vol. 19, No. 1, pp. 78-86. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000754
  25. Norman, F.A., and Cardenas, M.B. (2014). "Heat transport in hyporheic zones due to bedforms: An experimental study." Water Resources Research, Vol. 50, No. 4, pp. 3568-3582. https://doi.org/10.1002/2013wr014673
  26. Packman, A.I., Salehin, M., and Zaramella, M. (2004). "Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows." Journal of Hydraulic Engineering, Vol. 130, No. 7, pp. 647-656. https://doi.org/10.1061/(asce)0733-9429(2004)130:7(647)
  27. Raudkivi, A.J. (1997). "Ripples on stream bed." Journal of Hydraulic Engineering, Vol. 123, No. 1, pp. 58-64. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(58)
  28. Ren, J., and Zhao, B. (2020). "Model-based analysis of the effects of rippled bed morphologies on hyporheic exchange." Journal of Hydrologic Engineering, Vol. 25, No. 6, 04020023. https://doi.org/10.1061/(asce)he.1943-5584.0001931
  29. Ren, J., Wang, X., Zhou, Y., Chen, B., and Men, L. (2019). "An analysis of the factors affecting hyporheic exchange based on numerical modeling." Water, Vol. 11, No. 4, 665. https://doi.org/10.3390/w11040665
  30. Ribberink, J.S., and Al-Salem, A.A. (1994). "Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow." Journal of Geophysical Research: Oceans, Vol. 99, No. C6, pp. 12707-12727. https://doi.org/10.1029/94JC00380
  31. Runkel, R.L., and Chapra, S.C. (1993). "An efficient numerical solution of the transient storage equations for solute transport in small streams." Water Resources Research, Vol. 29, No. 1, pp. 211-215. https://doi.org/10.1029/92WR02217