참고문헌
- F. Al-Musallam and S. L. Kalla, Further results on a generalized gamma function occurring in diffraction theory, Integral Transform. Spec. Funct. 7 (1998), no. 3-4, 175-190. https://doi.org/10.1080/10652469808819198
- L. C. Andrews, Special functions of mathematics for engineers, reprint of the 1992 second edition, SPIE Optical Engineering Press, Bellingham, WA, 1998.
- G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9781107325937
- M. Arshad, S. Mubeen, K. S. Nisar, and G. Rahman, Extended Wright-Bessel function and its properties, Commun. Korean Math. Soc. 33 (2018), no. 1, 143-155. https://doi.org/10.4134/CKMS.c170039
- A. Belafhal, Z. Hricha, L. Dalil Essakali and T. Usman, A note on some integrals involving Hermite polynomials and their applications, Advanced Mathematical Models & Applications. 5 (2020), 313-319.
- A. Belafhal and F. Saad, Conversion of circular beams by a spiral phase plate: generation of generalized Humbert beams, Optik. 138 (2017), 516-528. https://doi.org/10.1016/j.ijleo.2017.03.097
- M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, N. M. Temme, and E. J. M. Veling, Asymptotics and closed form of a generalized incomplete gamma function, J. Comput. Appl. Math. 67 (1996), no. 2, 371-379. https://doi.org/10.1016/0377-0427(95)00018-6
- M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), no. 1, 99-124. https://doi.org/10.1016/0377-0427(94)90187-2
- M. A. Chaudhry and S. M. Zubair, On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms, J. Comput. Appl. Math. 59 (1995), no. 3, 253-284. https://doi.org/10.1016/0377-0427(94)00026-W
- M. A. Chaudhry and S. M. Zubair, Extended incomplete gamma functions with applications, J. Math. Anal. Appl. 274 (2002), no. 2, 725-745. https://doi.org/10.1016/S0022-247X(02)00354-2
- A. A. A. Ebrahim, F. Saad, L. Ez-zariy, and A. Belafhal, Theoretical conversion of the hypergeometric-Gaussian beams family into a high-order spiraling Bessel beams by a curved fork-shaped hologram, Opt. Quant. Electron. 49 (2017), 169-186. https://doi.org/10.1007/s11082-017-0987-6
- M. El-Shahed and A. Salem, An extension of Wright function and its properties, J. Math. 2015 (2015), Art. ID 950728, 11 pp. https://doi.org/10.1155/2015/950728
- R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, second edition, Springer Monographs in Mathematics, Springer, Berlin, t 2020. https://doi.org/10.1007/978-3-662-61550-8
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, fifth edition, Academic Press, Inc., San Diego, CA, 1996.
- P. Humbert and R. P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses generalisations, Bull. Sci. Math. (2) 77 (1953), 180-185.
- D. F. V. James and S. S. Agarwal, The generalized Fresnel transform and its application to optics, Optics Commun. 126 (1996), 207-212. https://doi.org/10.1016/0030-4018(95)00708-3
- W. A. Khan and K. S. Nisar, Beta type integral formula associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87 (2018), no. 1, 117-125.
- W. A. Khan, K. S. Nisar, M. Acikgoz, and U. Duran, A novel kind of Hermite based Frobenius type Eulerian polynomials, Proc. Jangjeon Math. Soc. 22 (2019), no. 4, 551-563.
- W. A. Khan, K. S. Nisar, and J. Choi, An integral formula of the Mellin transform type involvilng the extended Wright-Bessel function, FJMS. 102 (2017), 2903-2912. https://doi.org/10.17654/MS102112903
- N. U. Khan, T. Usman, and M. Aman, Some properties concerning the analysis of generalized Wright function, J. Comput. Appl. Math. 376 (2020), 112840, 8 pp. https://doi.org/10.1016/j.cam.2020.112840
- N. U. Khan, T. Usman, and M. Aman, Computation of certain integral formulas involving generalized Wright function, Adv. Difference Equ. 2020 (2020), Paper No. 491, 10 pp. https://doi.org/10.1186/s13662-020-02948-8
- T. Kim, D. S. Kim, and J.-J. Seo, Fully degenerate poly-Bernoulli numbers and polynomials, Open Math. 14 (2016), no. 1, 545-556. https://doi.org/10.1515/math-2016-0048
- F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in Waves and stability in continuous media (Bologna, 1993), 246-251, Ser. Adv. Math. Appl. Sci., 23, World Sci. Publ., River Edge, NJ, 1994.
- F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010. https://doi.org/10.1142/9781848163300
- K. S. Mathur, Fundamentals of Fiber Optics Communications, Zorba books, India, 2018.
- A. R. Miller, Reductions of a generalized incomplete gamma function, related Kampe de F'eriet functions, and incomplete Weber integrals, Rocky Mountain J. Math. 30 (2000), no. 2, 703-714. https://doi.org/10.1216/rmjm/1022009290
- G. M. Mittag-Leffler, Une generalisation de l'integrale de Laplace-Abel, C. R. Acad. Sci. Paris (Ser. II) 137 (1903), 537-539.
- G. M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C.R. Acad. Sci. Paris (Ser. II). 137 (1903), 554-558.
- G. M. Mittag-Leffler, Sopra la funzione Eα(x), Rendiconti R. Accademia Lincei (Ser. V). 13 (1904), 3-5.
- G. M. Mittag-Leffler, Sur la repr'esentation analytique d'une branche uniforme d'une fonction monog'ene, Acta Math. 29 (1905), no. 1, 101-181. https://doi.org/10.1007/BF02403200
- S. Naheed, S. Mubeen, G. Rahman, M. R. Alharthi, and K. S. Nisar, Some new inequalities for the generalized Fox-Wright functions, AIMS Math. 6 (2021), no. 6, 5452-5464. https://doi.org/10.3934/math.2021322
- K. S. Nisar and W.A. Khan, Notes on q-Hermite based unified Apostol type polynomials, J. Interdiscip. Math. 22 (2019), 1185-1203. https://doi.org/10.1080/09720502.2019.1709317
- E. Ozergin, M. A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Table of Integrals, Series, and Products, Academic Press, New York, 2007.
- F. Saad, E. M. El Halba, and A. Belafhal, Generation of generalized spiraling Bessel beams of arbitrary order by curved fork-shaped holograms, Opt. Quant. Electron. 48 (2016), 454-465. https://doi.org/10.1007/s11082-016-0723-7
- V. Singh, M. A. Khan, A. H. Khan, and K. S. Nisar, A note on modified Hermite matrix polynomials, J . Math. Computer Sci. 22 (2021), 333-346. https://doi.org/10.22436/jmcs.022.04.03
- H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1984.
- A. Wiman, Uber den Fundamentalsatz in der Teorie der Funktionen Ea(x), Acta Math. 29 (1905), no. 1, 191-201. https://doi.org/10.1007/BF02403202
- E. M. Wright, On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71
- E. M. Wright, The Asymptotic Expansion of the Generalized Bessel Function, Proc. London Math. Soc. (2) 38 (1935), 257-270. https://doi.org/10.1112/plms/s2-38.1.257
- E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Journal London Math. Soc. 10 (1935), 287-293.
- E. M. Wright, The generalized Bessel function of order greater than one, Quart. J. Math. Oxford Ser. 11 (1940), 36-48. https://doi.org/10.1093/qmath/os-11.1.36