DOI QR코드

DOI QR Code

NEW GENERALIZATION OF THE WRIGHT SERIES IN TWO VARIABLES AND ITS PROPERTIES

  • Belafhal, Abdelmajid (LPNAMME, Laser Physics Group Department of Physics Faculty of Sciences Chouaib Doukkali University) ;
  • Chib, Salma (LPNAMME, Laser Physics Group Department of Physics Faculty of Sciences Chouaib Doukkali University) ;
  • Usman, Talha (Department of Mathematics School of Basic and Applied Sciences Lingaya's Vidyapeeth)
  • 투고 : 2021.01.05
  • 심사 : 2021.04.15
  • 발행 : 2022.01.31

초록

The main aim of this paper is to introduce a new generalization of the Wright series in two variables, which is expressed in terms of Hermite polynomials. The properties of the freshly defined function involving its auxiliary functions and the integral representations are established. Furthermore, a Gauss-Hermite quadrature and Gaussian quadrature formulas have been established to evaluate some integral representations of our main results and compare them with our theoretical evaluations using graphical simulations.

키워드

참고문헌

  1. F. Al-Musallam and S. L. Kalla, Further results on a generalized gamma function occurring in diffraction theory, Integral Transform. Spec. Funct. 7 (1998), no. 3-4, 175-190. https://doi.org/10.1080/10652469808819198
  2. L. C. Andrews, Special functions of mathematics for engineers, reprint of the 1992 second edition, SPIE Optical Engineering Press, Bellingham, WA, 1998.
  3. G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9781107325937
  4. M. Arshad, S. Mubeen, K. S. Nisar, and G. Rahman, Extended Wright-Bessel function and its properties, Commun. Korean Math. Soc. 33 (2018), no. 1, 143-155. https://doi.org/10.4134/CKMS.c170039
  5. A. Belafhal, Z. Hricha, L. Dalil Essakali and T. Usman, A note on some integrals involving Hermite polynomials and their applications, Advanced Mathematical Models & Applications. 5 (2020), 313-319.
  6. A. Belafhal and F. Saad, Conversion of circular beams by a spiral phase plate: generation of generalized Humbert beams, Optik. 138 (2017), 516-528. https://doi.org/10.1016/j.ijleo.2017.03.097
  7. M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  8. M. A. Chaudhry, N. M. Temme, and E. J. M. Veling, Asymptotics and closed form of a generalized incomplete gamma function, J. Comput. Appl. Math. 67 (1996), no. 2, 371-379. https://doi.org/10.1016/0377-0427(95)00018-6
  9. M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), no. 1, 99-124. https://doi.org/10.1016/0377-0427(94)90187-2
  10. M. A. Chaudhry and S. M. Zubair, On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms, J. Comput. Appl. Math. 59 (1995), no. 3, 253-284. https://doi.org/10.1016/0377-0427(94)00026-W
  11. M. A. Chaudhry and S. M. Zubair, Extended incomplete gamma functions with applications, J. Math. Anal. Appl. 274 (2002), no. 2, 725-745. https://doi.org/10.1016/S0022-247X(02)00354-2
  12. A. A. A. Ebrahim, F. Saad, L. Ez-zariy, and A. Belafhal, Theoretical conversion of the hypergeometric-Gaussian beams family into a high-order spiraling Bessel beams by a curved fork-shaped hologram, Opt. Quant. Electron. 49 (2017), 169-186. https://doi.org/10.1007/s11082-017-0987-6
  13. M. El-Shahed and A. Salem, An extension of Wright function and its properties, J. Math. 2015 (2015), Art. ID 950728, 11 pp. https://doi.org/10.1155/2015/950728
  14. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, second edition, Springer Monographs in Mathematics, Springer, Berlin, t 2020. https://doi.org/10.1007/978-3-662-61550-8
  15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, fifth edition, Academic Press, Inc., San Diego, CA, 1996.
  16. P. Humbert and R. P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses generalisations, Bull. Sci. Math. (2) 77 (1953), 180-185.
  17. D. F. V. James and S. S. Agarwal, The generalized Fresnel transform and its application to optics, Optics Commun. 126 (1996), 207-212. https://doi.org/10.1016/0030-4018(95)00708-3
  18. W. A. Khan and K. S. Nisar, Beta type integral formula associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87 (2018), no. 1, 117-125.
  19. W. A. Khan, K. S. Nisar, M. Acikgoz, and U. Duran, A novel kind of Hermite based Frobenius type Eulerian polynomials, Proc. Jangjeon Math. Soc. 22 (2019), no. 4, 551-563.
  20. W. A. Khan, K. S. Nisar, and J. Choi, An integral formula of the Mellin transform type involvilng the extended Wright-Bessel function, FJMS. 102 (2017), 2903-2912. https://doi.org/10.17654/MS102112903
  21. N. U. Khan, T. Usman, and M. Aman, Some properties concerning the analysis of generalized Wright function, J. Comput. Appl. Math. 376 (2020), 112840, 8 pp. https://doi.org/10.1016/j.cam.2020.112840
  22. N. U. Khan, T. Usman, and M. Aman, Computation of certain integral formulas involving generalized Wright function, Adv. Difference Equ. 2020 (2020), Paper No. 491, 10 pp. https://doi.org/10.1186/s13662-020-02948-8
  23. T. Kim, D. S. Kim, and J.-J. Seo, Fully degenerate poly-Bernoulli numbers and polynomials, Open Math. 14 (2016), no. 1, 545-556. https://doi.org/10.1515/math-2016-0048
  24. F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in Waves and stability in continuous media (Bologna, 1993), 246-251, Ser. Adv. Math. Appl. Sci., 23, World Sci. Publ., River Edge, NJ, 1994.
  25. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010. https://doi.org/10.1142/9781848163300
  26. K. S. Mathur, Fundamentals of Fiber Optics Communications, Zorba books, India, 2018.
  27. A. R. Miller, Reductions of a generalized incomplete gamma function, related Kampe de F'eriet functions, and incomplete Weber integrals, Rocky Mountain J. Math. 30 (2000), no. 2, 703-714. https://doi.org/10.1216/rmjm/1022009290
  28. G. M. Mittag-Leffler, Une generalisation de l'integrale de Laplace-Abel, C. R. Acad. Sci. Paris (Ser. II) 137 (1903), 537-539.
  29. G. M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C.R. Acad. Sci. Paris (Ser. II). 137 (1903), 554-558.
  30. G. M. Mittag-Leffler, Sopra la funzione Eα(x), Rendiconti R. Accademia Lincei (Ser. V). 13 (1904), 3-5.
  31. G. M. Mittag-Leffler, Sur la repr'esentation analytique d'une branche uniforme d'une fonction monog'ene, Acta Math. 29 (1905), no. 1, 101-181. https://doi.org/10.1007/BF02403200
  32. S. Naheed, S. Mubeen, G. Rahman, M. R. Alharthi, and K. S. Nisar, Some new inequalities for the generalized Fox-Wright functions, AIMS Math. 6 (2021), no. 6, 5452-5464. https://doi.org/10.3934/math.2021322
  33. K. S. Nisar and W.A. Khan, Notes on q-Hermite based unified Apostol type polynomials, J. Interdiscip. Math. 22 (2019), 1185-1203. https://doi.org/10.1080/09720502.2019.1709317
  34. E. Ozergin, M. A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
  35. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Table of Integrals, Series, and Products, Academic Press, New York, 2007.
  36. F. Saad, E. M. El Halba, and A. Belafhal, Generation of generalized spiraling Bessel beams of arbitrary order by curved fork-shaped holograms, Opt. Quant. Electron. 48 (2016), 454-465. https://doi.org/10.1007/s11082-016-0723-7
  37. V. Singh, M. A. Khan, A. H. Khan, and K. S. Nisar, A note on modified Hermite matrix polynomials, J . Math. Computer Sci. 22 (2021), 333-346. https://doi.org/10.22436/jmcs.022.04.03
  38. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1984.
  39. A. Wiman, Uber den Fundamentalsatz in der Teorie der Funktionen Ea(x), Acta Math. 29 (1905), no. 1, 191-201. https://doi.org/10.1007/BF02403202
  40. E. M. Wright, On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71
  41. E. M. Wright, The Asymptotic Expansion of the Generalized Bessel Function, Proc. London Math. Soc. (2) 38 (1935), 257-270. https://doi.org/10.1112/plms/s2-38.1.257
  42. E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Journal London Math. Soc. 10 (1935), 287-293.
  43. E. M. Wright, The generalized Bessel function of order greater than one, Quart. J. Math. Oxford Ser. 11 (1940), 36-48. https://doi.org/10.1093/qmath/os-11.1.36