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Abstract. For k = 1, 2, let fk = hk + gk be normalized harmonic right
half-plane or vertical strip mappings. We consider the convex combina-

tion f̂ = ηf1 + (1 − η)f2 = ηh1 + (1 − η)h2 + ηg1 + (1− η)g2 and the

combination f̃ = ηh1 + (1 − η)h2 + ηg1 + (1− η)g2. For real η, the two

mappings f̂ and f̃ are the same. We investigate the univalence and di-

rectional convexity of f̂ and f̃ for η ∈ C. Some sufficient conditions are

found for convexity of the combination f̃ .

1. Introduction

A domain Ω ⊂ C is convex in the direction γ (0 ≤ γ < π), if every line
parallel to the line joining the origin to the point eiγ has connected intersection
with Ω. For γ = 0 (or π/2), a domain convex in the direction γ is said to be
convex in the real (or imaginary) direction. A mapping f is convex in the
direction γ if its image is convex in the direction γ. A mapping is convex if it is
convex in every direction. Mappings convex in some direction are called as the
directionally convex mappings. This paper studies the directional convexity
of some combinations of harmonic mappings. Recall that a complex-valued
harmonic function f defined on the open unit disk D := {z ∈ C : |z| < 1} can
be written as f = h + g, where the functions h and g are analytic and are,
respectively, known as analytic and co-analytic parts of f . By a theorem of
Lewy [14], it follows that the function f = h+ g is locally univalent and sense-
preserving on D if and only if its Jacobian |h(z)′|2−|g′(z)|2 > 0, or equivalently,
for h′(z) 6= 0, the dilatation ω of f , defined by ω = g′/h′, satisfies |ω(z)| < 1 for
all z ∈ D. Let H denote the class of all locally univalent and sense-preserving
harmonic mappings f = h+ g defined on D and normalized by the conditions
h(0) = h′(0)− 1 = 0. We shall be interested in the combinations of mappings
in the subclass SH of all univalent harmonic mappings in H.
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The convex combination f of the mappings fk = hk + gk, k = 1, 2 in SH ,
given by

(1.1) f = tf1 + (1− t)f2 = th1 + (1− t)h2 + tg1 + (1− t)g2, 0 ≤ t ≤ 1,

is not univalent in general. See [2–7,10] and the references therein for the other
related work on the directional convexity of harmonic mappings and some of
their combinations. Recently, several authors [11–13, 17–19] have studied the
convexity in a particular direction of the convex combination of some subclasses
of harmonic mappings using the method of “shear construction” [8] which is
described in the following lemma.

Lemma 1.1 ([8]). A locally univalent and sense-preserving harmonic mapping
f = h+ g on D is univalent and maps D onto a domain convex in the direction
γ (0 ≤ γ < π) if and only if the analytic mapping h − e2iγg is univalent and
maps D onto a domain convex in the direction γ.

Dorff and Rolf [11] proved that the convex combination of two locally univa-
lent sense-preserving harmonic mappings is univalent and convex in the imagi-
nary direction if they are convex in the imaginary direction and have the same
dilatations. Wang et al. [19] proved that the mapping f given by (1.1) is uni-
valent and convex in the real direction if

(1.2) hk(z) + gk(z) =
z

1− z
.

The results in [19] were extended to a larger class of mappings by Kumar et
al. [13]. Motivated by Wang et al. [19] and Kumar et al. [13], we study the
combinations of some harmonic mappings including the right half-plane and
vertical strip mappings for directional convexity. For η ∈ C and fk = hk + gk
(k = 1, 2) in SH , we define the mappings f̂ and f̃ by

f̂ = ηf1 + (1− η)f2 = ηh1 + (1− η)h2 + ηg1 + (1− η)g2(1.3)

and

f̃ = ηh1 + (1− η)h2 + ηg1 + (1− η)g2.(1.4)

These mappings f̂ and f̃ are same as the mapping f defined in (1.1) when
0 ≤ η < 1.

It is well-known [1, 9] that if the function f = h+ g ∈ SH maps D onto the
right half-plane {w ∈ C : Re(w) > −1/2}, then

h(z) + g(z) =
z

1− z
=

∫ z

0

dξ

(1− ξ)2
,

and if it maps D onto the vertical strip {w ∈ C : (β − π)/(2 sinβ) < Rew <
α/(2 sinα)}, π/2 < β < π, then

h(z) + g(z) =
1

2i sinβ
log

(
1 + zeiβ

1 + ze−iβ

)
=

∫ z

0

dξ

1 + 2ξ cosβ + ξ2
.
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In Section 2, we show that if the dilatation |g′k/h′k| < αk ≤ 1 and

hk(z) + e2iµgk(z) =

∫ z

0

ψµ,ν(ξ)dξ,

where

(1.5) ψµ,ν(z) =
1

1− 2ze−iµ cos ν + z2e−2iµ
, µ ∈ [0, π), ν ∈ [0, 2π),

then the mapping f̂ is univalent and convex in the direction µ for all η ∈ C
with

|η| < (1− α1)(1− α2)

α1 + α2
.

The directional convexity of analytic mappings are verified by the following
result of Royster and Ziegler.

Lemma 1.2 ([15]). Let φ be a non-constant analytic mapping in D. Then φ
maps D onto a domain convex in the direction γ (0 ≤ γ < π) if and only if
there are real numbers µ (0 ≤ µ < π) and ν (0 ≤ ν < 2π) such that

(1.6) Re
(
ei(µ−γ)(1− 2ze−iµ cos ν + z2e−2iµ)φ′(z)

)
≥ 0, z ∈ D.

Remark 1.3. By taking γ or γ + π equals to µ in Lemma 1.2, we see a non-
constant analytic mapping φ is convex in the direction (0 ≤ µ < π), if for some
ν (0 ≤ ν < 2π), Re (φ′(z)/ψµ,ν(z)) is either non-negative or non-positive on D.

In Section 3, we show that if |g′k/h′k| < αk ≤ 1 and hk − e2iγgk = ψ,
where γ ∈ [0, π) and ψ is an analytic mapping convex in the direction γ, then

the mapping f̃ is univalent and convex in the direction γ for all η ∈ C with
|η| < (1− α1)(1− α2)/(α1 + α2). However, if γ = µ+ π/2 and the function ψ
is replaced by the function

∫ z
0
ψµ,ν(ξ)dξ where the function ψµ,ν is defined in

(1.5), then the mapping f̃ turns out to be convex. Moreover, if γ = µ and the
function ψ is replaced by the function

∫ z
0
p(ξ)ψµ,ν(ξ)dξ, where p is an analytic

function with positive real part on D, then the mapping f̃ is convex in the
direction µ. For specific choices of p, our results reduce to the results of Wang
et al. [19, Theorem 3] and Kumar et al. [13, Theorem 2.3].

2. The linear combination f̂

Our first theorem gives us a condition on the parameter η ∈ C so that the

mapping f̂ given by (1.3) is univalent and convex in the direction µ.

Theorem 2.1. For k = 1, 2, let the mapping fk = hk + gk ∈ SH satisfy

(2.1) hk(z) + e2iµgk(z) =

∫ z

0

ψµ,ν(ξ)dξ,
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where the function ψµ,ν is given by (1.5). If the dilatation ωk = g′k/h
′
k of fk

satisfy the inequality |ωk| < αk ≤ 1, then the mapping f̂ given by (1.3) is
univalent and convex in the direction µ for all η ∈ C with

(2.2) |η| ≤ α :=
(1− α1)(1− α2)

2(α1 + α2)
.

Proof. We first show that the mapping f̂ is locally univalent and sense-preserv-

ing. This is done by showing that the dilatation ω of the mapping f̂ satisfies
|ω| < 1 on D. Since ωk is the dilatation of the mapping fk, the dilatation ω of

the mapping f̂ is given by

ω =
ηg′1 + (1− η)g′2
ηh′1 + (1− η)h′2

=
ηω1h

′
1 + (1− η)ω2h

′
2

ηh′1 + (1− η)h′2
.(2.3)

Solving g′k = ωkh
′
k along with (2.1) for h′k, we get

h′k =
ψµ,ν

1 + e2iµωk
.

On using the above expression for h′k, the equation (2.3) readily gives

ω =
ηω1(1 + e2iµω2) + (1− η)ω2(1 + e2iµω1)

η(1 + e2iµω2) + (1− η)(1 + e2iµω1)
.

With ωk replaced by e−2iµωk, the above equation gives

e2iµω =
ηω1(1 + ω2) + (1− η)ω2(1 + ω1)

η(1 + ω2) + (1− η)(1 + ω1)

and thus the dilatation ω satisfies |ω| < 1 on D if and only if

|ηω1(1 + ω2) + (1− η)ω2(1 + ω1)|2 < |η(1 + ω2) + (1− η)(1 + ω1)|2,
or equivalently if and only if

(2.4) |1 + ω1|2
(
1− |ω2|2

)
+ 2 Re

(
η(ω2 − ω1)(1 + ω1)(e2iθ − ω2)

)
> 0,

where θ is the argument of η. Therefore, the dilatation ω satisfies |ω| < 1 on
D if

|η| <
|1 + ω1|

(
1− |ω2|2

)
2|(ω2 − ω1)(e2iθ − ω2)|

.

Again, the inequality |ωk| < αk implies that

|1 + ω1)|
(
1− |ω2|2

)
2|(ω2 − ω1)(e2iθ − ω2)|

>
(1− α1)(1− α2)

2(α1 + α2)
= α.

Therefore, the dilatation ω of the mapping f̂ satisfies |ω| < 1 for all η with

|η| ≤ α and, therefore, the mapping f̂ is locally univalent and sense-preserving.
We now show that the mapping h− e2iµg is convex in the direction µ for all

η ∈ C with |η| ≤ α. As the mapping f̂ is given by (1.3), we have

f̂ = ηf1 + (1− η)f2 =: h+ g,
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where

h = ηh1 + (1− η)h2 and g = ηg1 + (1− η)g2.

Writing η = |η|eiθ, we see that

h− e2iµg = h2 − e2iµg2 + η(h1 − h2 − e2i(µ−θ)(g1 − g2)).

Therefore, in view of (2.1), we see that

h′ − e2iµg′

ψµ,ν
=
h′2 − e2iµg′2
h′2 + e2iµg′2

+ η

(
h′1 − e2i(µ−θ)g′1
h′1 + e2iµg′1

− h′2 − e2i(µ−θ)g′2
h′2 + e2iµg′2

)
=

1− e2iµω2

1 + e2iµω2
+ η

(
1− e2i(µ−θ)ω1

1 + e2iµω1
− 1− e2i(µ−θ)ω2

1 + e2iµω2

)
=

(1− e2iµω2)(1 + e2iµω1) + ηe2iµ(1 + e−2iθ)(ω2 − ω1)

(1 + e2iµω1)(1 + e2iµω2)

=

(
(1− |ω2|2 − 2i Im(e2iµω2))|1 + e2iµω1|2

+ ηe2iµ(1 + e−2iθ)(ω2 − ω1)(1 + e−2iµω1)(1 + e−2iµω2)

)
|(1 + e2iµω1)(1 + e2iµω2)|2

.

Above equation shows that Re(h′ − e2iµg′)/ψµ,ν > 0 on D if and only if

(1− |ω2|2)|1 + e2iµω1|2

+ Re(ηe2iµ(1 + e−2iθ)(ω2 − ω1)(1 + e−2iµω1)(1 + e−2iµω2)) > 0.

The last inequality holds if

(2.5) |1 + e2iµω1|2
(
1− |ω2|2

)
− 2|η||(ω2−ω1)(1 + e−2iµω1)(1 + e−2iµω2)| > 0,

or equivalently if

|η| < |1 + e2iµω1|(1− |ω2|2)

2|(ω1 − ω2)(1 + e−2iµω2)|
.

But |ωk| < αk implies that

|1 + e2iµω1|(1− |ω2|2)

2|(ω1 − ω2)(1 + e−2iµω2)|
>

(1− α1)(1− α2)

2(α1 + α2)
= α.

Hence, it follows that Re((h′ − e2iµg′)/ψµ,ν) > 0 on D for all η with |η| ≤ α.
Therefore, by Remark 1.3, the mapping h− e2iµg is convex in the direction µ.

Since the mapping f̂ is locally univalent and sense-preserving and the map-
ping h − e2iµg is convex in the direction µ, it follows by Lemma 1.1 that the

mapping f̂ is univalent and convex in the direction µ for all η with |η| ≤ α. �

The following example gives an illustration of Theorem 2.1.

Example 2.2. For k = 1, 2, let the mapping fk = hk + gk be such that

h1(z) = − 5

16

(
− 4z

1− z
− log(1− z) + log

(
1− z

5

))
,
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g1(z) = − 5

16

(
4

5

z

1− z
+ log(1− z)− log

(
1− z

5

))
,

h2(z) =
7

64

(
8z

1− z
− log(1− z) + log

(
1 +

z

7

))
and

g2(z) =
7

64

(
8

7

z

1− z
+ log(1− z)− log

(
1 +

z

7

))
.

Then we have

hk(z) + gk(z) =

∫ z

0

1

(1− ξ)2
dξ =

z

1− z
,

ω1(z) = g′1(z)/h′1(z) = −z/5 and ω2(z) = g′2(z)/h′2(z) = z/7.

Hence, by Theorem 2.1, the mapping f̂ = ηf1 + (1 − η)f2 is univalent and
convex in the real direction for η ∈ D.

3. The combination f̃

In this section, we find some sufficient conditions for the mapping f̃ defined
by (1.4) to be univalent and convex in some direction. We examine separately
the case when η is real.

Theorem 3.1. Let ψ be an analytic mapping convex in the direction γ ∈ [0, π).
For k = 1, 2, let fk = hk + gk ∈ SH satisfy the condition

(3.1) λ(h1 − e2iγg1) = h2 − e2iγg2 = λψ

for some λ ∈ R. If any one of the following conditions holds:

(i) λ > 0 and 0 ≤ η ≤ 1, or λ < 0 and η ≤ 0, or
(ii) λ = 1, the dilatation ωk of fk satisfies |ωk| < αk ≤ 1 and η ∈ C such

that

|η| ≤ (1− α1)(1− α2)

2(α1 + α2)
,

then the mapping f̃ given by (1.4) is univalent and convex in the direction γ.

Proof. Since

f̃ = ηh1 + (1− η)h2 + ηg1 + (1− η)g2 =: h+ g,

the equation (3.1) shows that

h− e2iγg = η
(
h1 − e2iγg1 − h2 + e2iγg2

)
+ h2 − e2iγg2

= η(ψ − λψ) + λψ = (η + λ (1− η))ψ.

Therefore, in view of the assumptions on ψ and λ, the mapping h − e2iγg is
convex in the direction γ.
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Our result follows from Lemma 1.1 if the mapping f̃ is locally univalent
and sense-preserving. We show this by proving the dilatation ω of f̃ satisfies
|ω| < 1. Since g′k = ωkh

′
k, the dilatation ω of f̃ is given by

ω =
g′

h′
=
ηg′1 + (1− η)g′2
ηh′1 + (1− η)h′2

=
ηω1h

′
1 + (1− η)ω2h

′
2

ηh′1 + (1− η)h′2
.(3.2)

On using g′k = ωkh
′
k in (3.1), we see that

(3.3) h′1 =
ψ′

1− e2iγω1
and h′2 =

λψ′

1− e2iγω2
.

Substituting the values of h′1 and h′2 from (3.3) in (3.2), we have

(3.4) ω =
ηω1(1− e2iγω2) + λ(1− η)ω2(1− e2iγω1)

η(1− e2iγω2) + λ(1− η)(1− e2iγω1)
.

With ωk replaced by e−2iγωk, the above reduced to

(3.5) e2iγω =
ηω1(1− ω2) + λ(1− η)ω2(1− ω1)

η(1− ω2) + λ(1− η)(1− ω1)
.

Case (i). If either η is real with 0 ≤ η ≤ 1 and λ > 0, or η is real with η ≤ 0
and λ < 0, then both

η

η + λ(1− η)
and

λ(1− η)

η + λ(1− η)

are non-negative, and at least one of them is positive. In this case, it is easily
seen that the denominator in the above expression of ω does not vanish in D
for the values of η and λ. Therefore, by using (3.5), it follows that

Re

(
1 + e2iγω

1− e2iγω

)
= Re

(
η(1 + ω1)(1− ω2) + λ(1− η)(1 + ω2)(1− ω1)

(η + λ(1− η))(1− ω2)(1− ω1)

)
= Re

(
η

η + λ(1− η)

1 + ω1

1− ω1

)
+ Re

(
λ(1− η)

η + λ(1− η)

1 + ω2

1− ω2

)
.(3.6)

Since |ωk| = |e2iγωk| < 1, we have Re((1 + ωk)/(1 + ωk)) > 0 on D. Therefore,
(3.6) shows that

Re

(
1 + e2iγω

1 + e2iγω

)
> 0

on D. Hence |ω| = |e2iγω| < 1 on D, which implies that f is locally univalent
and sense-preserving.

Case (ii). For λ = 1, we see from (3.5) that

e2iγω =
ηω1(1− ω2) + (1− η)ω2(1− ω1)

η(1− ω2) + (1− η)(1− ω1)
.

Above equation shows that |ω| < 1 on D if and only if

|ηω1(1− ω2) + (1− η)ω2(1− ω1)|2 < |η(1− ω2) + (1− η)(1− ω1)|2,
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or equivalently if and only if

(3.7) |1− ω1|2
(
1− |ω2|2

)
+ 2 Re (η(ω1 − ω2)(1− ω1)(1− ω2)) > 0.

Therefore, |ω| < 1 on D if

|η| <
|1− ω1|

(
1− |ω2|2

)
2|(ω1 − ω2)(1− ω2)|

.

But |ωk| < αk implies that

|1− ω1|
(
1− |ω2|2

)
2|(ω1 − ω2)(1− ω2)|

>
(1− α1)(1− α2)

2(α1 + α2)
.

Hence, |ω| < 1 for all η ∈ C with

|η| ≤ (1− α1)(1− α2)

2(α1 + α2)
. �

Remark 3.2. Since the mapping φ(z) :=
∫ z
0
ψµ,ν(ξ)dξ, where ψµ,ν is given by

(1.5), is convex (convexity of φ is easily seen by observing that Re (1 + zφ′′/φ′)
> 0 on D), and hence convex in the direction γ. Therefore, we can take ψ = ψµ,ν
in Theorem 3.1. However, in this case, we will show f̃ in Theorem 3.1 belongs
to class KH of all convex harmonic mappings in SH , provided γ = µ+π/2 and
λ = 1. In fact, we have a more general result, see Theorem 3.4.

For any non-negative integer n, define the differential operator Dn : A −→ A
on the class A of all analytic mappings f as: D0f(z) = f(z) and Dnf(z) =
z(Dn−1f)′(z) for n ≥ 1. For the harmonic mapping f = h+ g, define Dnf :=
Dnh + Dng. In order to prove our next result, we use the following straight
forward generalization of Sheil-Small’s [16] result on the relation between the
starlike and convex harmonic mappings.

Theorem 3.3. If f = h+g is a starlike harmonic mapping in SH , and H and
G are the analytic mappings defined by

DnH = h, DnG = (−1)ng, H(0) = H ′(0)− 1 = G(0) = 0,

then the mapping F = H +G ∈ KH .

Theorem 3.4. For k = 1, 2, µ ∈ [0, π) and ν ∈ [0, 2π), let fk = hk + gk be a
harmonic mapping with h(0) = h′(0)− 1 = 0. Let Dn−1fk be locally univalent,
sense-preserving and

(3.8)
hk(z) + e2iµ(−1)n−1gk(z)

z
=

1

z

∫ zn=z

0

(
· · · 1

z1

∫ z1

0

ψµ,ν(ξ)dξ · · ·
)

dzn−1,

where ψµ,ν is given by (1.5). If

(i) 0 ≤ η ≤ 1, or
(ii) the dilatation ωk of Dn−1fk satisfies |ωk| < αk ≤ 1 and η ∈ C such

that

|η| ≤ (1− α1)(1− α2)

2(α1 + α2)
,
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then the mapping f̃ given by (1.4) belongs to KH
Proof. Since

f̃ = ηh1 + (1− η)h2 + ηg1 + (1− η)g2 =: h+ g,(3.9)

we have

h(z) + e2iµg(z) = η
(
h1(z) + e2iµg1(z)− h2(z)− e2iµg2(z)

)
+ h2(z) + e2iµg2(z)

= h2(z) + e2iµg2(z).

Let H(z) := Dn−1h(z) and G(z) := (−1)n−1Dn−1g(z). In view of (3.8), we see
that

(3.10) H(z) + e2iµG(z) = Dn−1h(z) + e2iµ(−1)n−1Dn−1g(z) =

∫ z

0

ψµ,ν(ξ)dξ,

and hence H ′ + e−2iµG′ = ψµ,ν . Theorem 3.1, in view of the assumptions

on Dn−1fk, shows that the mapping F := H + G is locally univalent and
sense-preserving. We will show that it is convex. In view of Lemma 1.1, it
suffices to show that the mapping H − e2iθG is convex in the direction θ for
all θ ranging in an interval of length π. In other words, it is sufficient to show
that the mapping ei(µ−θ)(H − e2iθG) is convex in the direction µ for all θ such

that −π/2 ≤ µ − θ < π/2. Since f̃ is locally univalent and sense-preserving,
|G′/H ′| < 1 on D, and hence

Re

(
H ′ − e2iµG′

H ′ + e2iµG′

)
> 0.

Above inequality shows that

Re

(
ei(µ−θ)(H − e2iθG)′

ψµ,ν

)
= Re

(
ei(µ−θ)(H − e2iθG)′

H ′ + e2iµG′

)
= Re

(
(ei(µ−θ)H ′ − e2iµe−i(µ−θ)G′

H ′ + e2iµG′

)
= Re

(
cos(µ− θ)H

′ − e2iµG′

H ′ + e2iµG′
+ i sin(µ− θ)

)
= cos(µ− θ) Re

(
H ′ − e2iµG′

H ′ + e2iµG′

)
≥ 0.(3.11)

Therefore, in view of (3.11), Remark 1.3 shows that the mapping ei(µ−θ) (H −
e2iθG) is convex in the direction µ for all θ such that −π/2 ≤ µ−θ < π/2. Thus
F is convex, and hence starlike. Also, (3.9) shows that the normalization of fk
implies the normalization of f̃ . The result now follows by Theorem 3.3. �

Using Remark 1.3, Theorem 3.1 gives the following result.

Theorem 3.5. For k = 1, 2, let fk = hk + gk ∈ SH such that

(3.12) hk(z)− e2iµgk(z) =

∫ z

0

ψµ,ν(ξ)p(ξ)dξ, µ ∈ [0, π), ν ∈ [0, 2π),
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where ψµ,ν is given by (1.5) and p is an analytic mapping with Re p > 0 on D.
If

(i) 0 ≤ η ≤ 1, or
(ii) the dilatation ωk of fk satisfies |ωk(z)| < αk ≤ 1 and η ∈ C such that

|η| ≤ (1− α1)(1− α2)

2(α1 + α2)
,

then the mapping f̃ given by (1.4) is univalent and convex in the direction µ.

Proof. Since Re p > 0 on D, we have

Re

(
1

ψµ,ν(z)

(∫ z

0

ψµ,ν(ξ)p(ξ)dξ

)′)
= Re

(
1

ψµ,ν(z)
ψµ,ν(z)p(z)

)
= Re p(z) > 0.

Therefore, by Remark 1.3, the mapping
∫ z
0
ψµ,ν(ξ)p(ξ)dξ is convex in the direc-

tion µ. Hence, in view of equation (3.12), Theorem 3.1 follows the result. �

Corollary 3.6. Let ν1, ν2 ∈ [0, 2π), µ ∈ [0, π) and A,B ≥ 0 with A+ B > 0.
Also, for k = 1, 2, let fk = hk + gk ∈ SH such that

(3.13) hk(z) + e2iµgk(z) = A
z(1− ze−iµ cos ν1)

1− z2e−2iµ
+B

∫ z

0

ψµ,ν2(ξ)dξ,

where ψµ,ν2 is defined in (1.5). Then the mapping f̃ given by (1.4) is univalent
and convex in the direction µ+ π/2 for all η given as in Theorem 3.5.

Proof. We can write (3.13) as

hk(z) + e2iµgk(z) =

∫ z

0

(
A

1− 2ξe−iµ cos ν1 + ξ2e−2iµ

(1− ξ2e−2iµ)2
+Bψµ,ν2

)
dξ

=

∫ z

0

q(ξ)dξ

1− ξ2e−2iµ
=

∫ z

0

q(ξ) · ψµ+π/2,0(ξ)dξ,

where q is given by

q(z) = A
1− 2ze−iµ cos ν1 + z2e−2iµ

1− z2e−2iµ
+B

1− z2e−2iµ

1− 2ze−iµ cos ν2 + z2e−2iµ
.

Now, for γ ∈ [0, 2π), and, for z ∈ D,

Re

(
1− z2e−2iµ

1− 2ze−iµ cos γ + z2e−2iµ

)
=

1− |z|4 − 2 cos γ(1− |z|2) Re(e−iµz)

|1− 2ze−iµ cos γ + z2e−2iµ|2

≥ (1− |z|2)(1 + |z|2 − 2| cos γ|Re(e−iµz))

|1− 2ze−iµ cos γ + z2e−2iµ|2
> 0.

Therefore Re q > 0 on D. The proof now follows by Theorem 3.5. �
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Remark 3.7. Corollary 3.6 reduces to [19, Theorem 3] of Wang et al. when
A = 1, B = 0, µ = π and γ1 = 0 and to [13, Theorem 2.1] of Kumar et al.
when A = 1, B = 0 and µ = π.
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