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ON COMMON AND SEQUENTIAL FIXED POINTS VIA

ASYMPTOTIC REGULARITY

Ravindra Kishor Bisht, Sayantan Panja, Kushal Roy, and Mantu Saha

Abstract. In this paper, we introduce some new classes of generalized

mappings and prove some common fixed point theorems for a pair of
asymptotically regular mappings. Our results extend and improve various

well-known results due to Kannan, Reich, Wong, Hardy and Rogers, Ćirić,
Jungck, Górnicki and many others. In addition to it, a sequential fixed

point for a mapping which is the point-wise limit of a sequence of func-

tions satisfying Ćirić-Proinov-Górnicki type mapping has been proved.

Supporting examples have been given in strengthening hypotheses of our

established theorems.

1. Introduction and preliminaries

Fixed point theory is a trending research area for its numerous applications
in different branches of mathematics such as boundary value problems, nonlin-
ear differential and integral equations, non-linear matrix equations, homotopy
theory, stability of fixed point problems and many more (see [5, 15,19–21] and
references therein). Researchers in this particular area deal with several non-
linear mappings and topological spaces to investigate fixed points.

Asymptotic regularity is an important tool to find fixed points of mappings.
The definition of an asymptotically regular mapping is given as follows.

Definition ([1, 4]). In a metric space (X, d), a mapping T : X → X is said
to be asymptotically regular at x ∈ X, if limn→∞ d(Tnx, Tn+1x) = 0. If T
is asymptotically regular at all x ∈ X, then T is said to be asymptotically
regular.

To show the Picard iterating sequence to be Cauchy for a mapping T ,
sometimes T has to be assumed as asymptotically regular at some point in
the underlying space. Though in a metric space (X, d) for any mapping T ,
d(Tnξ, Tn+1ξ) → 0 as n → ∞ for some ξ belongs to X may not imply the
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sequence {Tnξ} to be a Cauchy sequence. The concept of asymptotic regular-
ity has been used to find fixed points and common fixed points of mappings in
several research papers of fixed point theory.

In the year 1968, Kannan [11] proved the following common fixed point
theorem for a pair of contractive mappings:

Theorem 1.1 ([11]). Let T, S : X → X, (X, d) a complete metric space, be
mappings such that

(1) d(Tx, Sy) ≤ k {d(x, Tx) + d(y, Sy)} for all x, y ∈ X, where k ∈
[
0,

1

2

)
.

Then T and S have a unique common fixed point.

Putting S = T, in the above theorem, we get the famous Kannan fixed
point theorem. Any Kannan contractive mapping in a metric space (X, d) is
an asymptotically regular mapping having exactly one fixed point.

Wong [24] proved the following common fixed point theorem:

Theorem 1.2 ([24]). Let T, S : X → X, (X, d) a complete metric space, be
mappings such that

(2)
d(Tx, Sy) ≤ αd(x, Tx) + βd(y, Sy) + γd(x, Sy)

+ δd(y, Tx) + ρd(x, y) for all x, y ∈ X,

where α, β, γ, δ and ρ are non-negative real numbers such that

(i) α+ β + γ + δ + ρ < 1, (ii) α = β or γ = δ.

Then T and S have a unique common fixed point.

In 2018, Jo [8] obtained the following result for a pair of mappings:

Theorem 1.3 ([8]). Let T, S : X → X, (X, d) a complete metric space, be
mappings satisfying (2) of Theorem 1.2, where α, β, γ, δ and ρ are nonnegative
real numbers such that

(i) α+ β + 2γ + ρ < 1, (ii) α+ β + 2δ + ρ < 1.

Then T and S have a unique common fixed point.

Putting S = T, in Theorem 1.2, we get a fixed point theorem of Hardy and
Rogers [7]. For S = T and γ = δ = 0, Theorem 1.2 reduces to a fixed point
theorem due to Reich [17]. If we consider γ = δ = ρ = 0 in Theorem 1.2, then
we get a common fixed point theorem of Srivastava and Gupta [23]. In fact,
Srivastava and Gupta proved the result in a more general form with T and S,
replaced by T p and Sq, respectively, for some positive integers p and q.

Recently, Górnicki [6] studied a new class of contractive mappings (by taking
the constant k ∈ [0,∞), in Kannan’s fixed point theorem) and proved a fixed
point theorem for such mappings over metric spaces with the assumption of
continuity, which is as follows.
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Theorem 1.4 ([6]). In a complete metric space (X, d), a continuous and
asymptotically regular map T : X → X satisfying

(3) d(Tx, Ty) ≤ αd(x, y) +K {d(x, Tx) + d(y, Ty)} for all x, y ∈ X

for some α ∈ [0, 1) and for some K ≥ 0 has a unique fixed point u ∈ X and
for each x ∈ X, Tnx→ u as n→∞.

In [2] Bisht has shown that Theorem 1.4 pertains to both continuous and
discontinuous mappings. It is important to note that condition (3) was first
appeared in [16].

Definition. In a metric space (X, d), let T, S : X → X be two mappings.
Then,

(i) T is said to be asymptotic regular with respect to S at a point x0 ∈ X
[18] if there exists a sequence {xn}n=0,1,... in X such that Txn = Sxn+1

for all n = 0, 1, . . . and d(Sxn+1, Sxn+2)→ 0 as n→∞.
(ii) Let {xn} be a sequence in X such that Txn = Sxn+1 for all n = 0, 1, . . .

and Txn → z as n → ∞ for some z ∈ X. Then T (resp. S) is said
to be (T, S)-orbitally continuous [14, 22] if TTxn → Tz as n → ∞
(resp. STxn → Sz as n→∞).

Definition ([10]). In a metric space (X, d), two maps T, S : X → X are said
to be compatible if limn→∞ d(TSxn, STxn) = 0, whenever {xn} is a sequence
in X with limn→∞ Txn = limn→∞ Sxn = z for some z ∈ X.

Bisht and Singh [3] have studied Jungck type common fixed point theorem
for a pair of self mappings over a metric space satisfying condition (4).

Theorem 1.5 ([3]). Let (X, d) be a complete metric space and T, S : X → X
be two mappings. Suppose that T is asymptotic regular with respect to S and
satisfy the following condition

(4) d(Tx, Ty) ≤ αd(Sx, Sy) +K{d(Tx, Sx) + d(Ty, Sy)}

for all x, y ∈ X, for some α ∈ [0, 1) and for some K ≥ 0. Then T and S
have a unique common fixed point in X, provided T and S are (T, S)-orbitally
continuous and compatible.

More recently, Khan and Oyetunbi [12] have proved another type of common
fixed point theorem for a pair of mappings, which is as follows.

Theorem 1.6. Let (X, d) be a complete metric space and T, S : X → X be
two asymptotically regular mappings satisfying the following condition

(5) d(Tx, Sy) ≤ λd(x, y) +K{d(x, Tx) + d(y, Sy)}

for all x, y ∈ X, for some λ ∈ [0, 1) and K ≥ 0. Then T and S have a unique
common fixed point in X, provided T and S are either k-continuous for some
k ≥ 1 or orbitally continuous.
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Panja et al. [13] have generalized the contractive condition (3) and intro-

duced a new type of contractive mapping called Ćirić–Proinov-Górnicki type
mapping.

Let us consider the class F of all functions F : [0,∞) × [0,∞) → [0,∞)
satisfying the following conditions:

(i) F (0, 0) = 0,
(ii) F is continuous at (0, 0).

Definition ([13], Ćirić-Proinov-Górnicki type mapping). In a metric space

(X, d), a mapping T : X → X is said to be Ćirić-Proinov-Górnicki type map-
ping if there exists α ∈ [0, 1) such that

(6) d(Tx, Ty) ≤ αmax{d(x, y), d(x, Ty), d(y, Tx)}+ F (d(x, Tx), d(y, Ty))

for all x, y ∈ X and for some F ∈ F .

Theorem 1.7 ([13]). Let (X, d) be a complete metric space and T : X → X be

an asymptotically regular Ćirić-Proinov-Górnicki type mapping. Then T has a
unique fixed point provided either T is k-continuous for k ≥ 1 or T is orbitally
continuous.

We now define three new classes of contractive mappings for a pair of map-
pings which extend definitions of Panja et al. [13].

Definition. In a metric space (X, d), mappings T, S : X → X are said to be

(i) Ćirić-Proinov-Górnicki (CPG) type mapping if there exists λ ∈ [0, 1) such
that

(7) d(Tx, Sy) ≤ λmax{d(x, y), d(x, Sy), d(y, Tx)}+ F (d(x, Tx), d(y, Sy)).

(ii) Hardy-Rogers-Proinov-Górnicki (HRPG) type mapping if there exist
α, β, γ ∈ [0, 1) with α+ β + γ < 1 such that

(8) d(Tx, Sy) ≤ αd(x, y) + βd(x, Sy) + γd(y, Tx) + F (d(x, Tx), d(y, Sy)).

(iii) Reich-Proinov-Górnicki (RPG) type mapping if there exist α ∈ [0, 1)
such that

(9) d(Tx, Sy) ≤ αd(x, y) + F (d(x, Tx), d(y, Sy))

for all x, y ∈ X and for some F ∈ F .

2. Main results

We start with the following common fixed point theorem for a pair of map-
pings satisfying CPG type contractive condition.

Theorem 2.1. Let (X, d) be a complete metric space and T, S : X → X be
two asymptotically regular mappings satisfying (7) for all x, y ∈ X, for some
λ ∈ [0, 1) and for some F ∈ F . Then T and S have a unique common fixed
point provided T and S are either k-continuous for some k ≥ 1 or orbitally
continuous.
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Proof. First we claim that d(Tnx, Snx)→ 0 as n→∞ for all x ∈ X.
Now if S = T , then there is nothing to prove. So suppose that S 6= T . Then

using (7),

d(Tnx, Snx) = d(T (Tn−1x), S(Sn−1x))

= λmax{d(Tn−1x, Sn−1x), d(Tn−1x, Snx), d(Sn−1x, Tnx)}
+ F (d(Tn−1x, Tnx), d(Sn−1x, Snx))

= λΓn + F (tn, sn),(10)

where Γn = max{d(Tn−1x, Sn−1x), d(Tn−1x, Snx), d(Sn−1x, Tnx)}, tn =
d(Tn−1x, Tnx) and sn = d(Sn−1x, Snx) for all n ∈ N. Since S and T are
asymptotic regular so tn → 0 and sn → 0 as n→∞.

Now if Γn = d(Tn−1x, Sn−1x), then using triangle inequality,

Γn ≤ d(Tn−1x, Tnx) + d(Tnx, Snx) + d(Snx, Sn−1x) and hence from (10),

we have

(11) d(Tnx, Snx) ≤ λ

1−λ
{
d(Tn−1x, Tnx)+d(Sn−1x, Snx)

}
+

1

1−λ
F (tn, sn).

Next if Γn = d(Tn−1x, Snx) or Γn = d(Sn−1x, Tnx), then in a similar way we
can get the followings, respectively,

(12) d(Tnx, Snx) ≤ λ

1− λ
d(Tn−1x, Tnx) +

1

1− λ
F (tn, sn),

(13) d(Tnx, Snx) ≤ λ

1− λ
d(Sn−1x, Snx) +

1

1− λ
F (tn, sn).

Combining (11), (12) and (13) we can write,

d(Tnx, Snx) ≤ λ

1− λ
{
d(Tn−1x, Tnx) + d(Sn−1x, Snx)

}
+

1

1− λ
F (tn, sn).

Now by using asymptotic regularity of S and T and the properties of the
function F we get, αn = d(Tnx, Snx)→ 0 as n→∞ for all x ∈ X.

Next let x0 ∈ X be arbitrary and consider the sequence xn = Tnx0 for all
n = 0, 1, 2, . . .. Then for n,m ∈ N and m > n we have,

d(xn, xm)

= d(Tnx0, T
mx0)

≤ d(Tnx0, S
nx0) + d(Snx0, T

mx0)

= d(Tnx0, S
nx0) + d(Tmx0, S

nx0)

≤ d(Tnx0, S
nx0) + F

(
d(Tm−1x0, T

mx0), d(Sn−1x0, S
nx0)

)
+ λmax

{
d(Tm−1x0, S

n−1x0), d(Tm−1x0, S
nx0), d(Tmx0, S

n−1x0)
}

= αn + F (βm, γn) + λKm,n,(14)
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where Km,n = max
{
d(Tm−1x0, S

n−1x0), d(Tm−1x0, S
nx0), d(Tmx0, S

n−1x0)
}

and βn = d(Tn−1x0, T
nx0), γn = d(Sn−1x0, S

nx0). Since S and T are asymp-
totic regular it follows that βn, γn → 0 as n→∞.

Case 1: If Km,n = d(Tm−1x0, S
n−1x0), then (14) gives

d(xn, xm)

≤ αn + F (βm, γn) + λd(Tm−1x0, S
n−1x0)

≤ αn + F (βm, γn)

+ λ
[
d(Sn−1x0, T

n−1x0)+d(Tn−1x0, T
nx0)+d(Tnx0, T

mx0)+d(Tmx0, T
m−1x0)

]
,

which implies

d(xn, xm) ≤ 1

1− λ
{αn + F (βm, γn)}+

λ

1− λ
[αn−1 + βn + βm] .(15)

Case 2: If Km,n = d(Tm−1x0, S
nx0), then (14) gives

d(xn, xm)

≤ αn + F (βm, γn) + λd(Tm−1x0, S
nx0)

≤ αn + F (βm, γn) + λ
[
d(Tm−1x0, T

mx0) + d(Tmx0, T
nx0) + d(Tnx0, S

nx0)
]
,

implying that

(16) d(xn, xm) ≤ 1

1− λ
{αn + F (βm, γn)}+

λ

1− λ
[βm + αn] .

Case 3: If Km,n = d(Tmx0, S
n−1x0), then from (14) we get

d(xn, xm)

≤ αn + F (βm, γn) + λd(Tmx0, S
n−1x0)

≤ αn + F (βm, γn) + λ
[
d(Tmx0, T

nx0) + d(Tnx0, S
nx0) + d(Snx0, S

n−1x0)
]
,

which yields

(17) d(xn, xm) ≤ 1

1− λ
{αn + F (βm, γn)}+

λ

1− λ
[αn + γn] .

Now combining (15), (16) and (17) we see that

d(xn, xm) ≤ 1

1− λ
{αn + F (βm, γn)}+ αn−1 + βn + βm + αn + γn → 0

as n,m→∞, since F is continuous at (0, 0) and F (0, 0) = 0.
Hence {xn} is a Cauchy sequence in X and by completeness of X, let xn →

u ∈ X as n→∞, i.e., Tnx0 → u as n→∞.
Again since d(Snx0, u) ≤ d(Snx0, T

nx0) + d(Tnx0, u), therefore Snx0 → u
as n→∞.

Suppose S and T are k-continuous: Since limn→∞ xn+1 = u, so limn→∞ Txn
=u. Moreover, for each k≥1 we have limn→∞ T kxn=u. Since limn→∞ T k−1xn
= u due to k-continuity of T , we get limn→∞ T kxn = Tu. Thus u = Tu, i.e.,
u ∈ X is a fixed point of T . In a similar way using k-continuity of S, we can
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get u = Su, i.e., u ∈ X is a fixed point of S. Hence u ∈ X is a common fixed
point of S and T .

Next suppose S and T are orbitally continuous: We have limn→∞ xn+1 =
limn→∞ Txn = u. Again from orbital continuity of T , limn→∞ xn = u im-
plies limn→∞ Txn = Tu. Hence u = Tu, i.e., u ∈ X is a fixed point of T .
Similarly using orbital continuity of S, we get Su = u. That is, u ∈ X is a
common fixed point of S and T .

To show uniqueness of the common fixed point let us suppose that v( 6= u) ∈
X be another common fixed point of S and T , i.e., Tv = v = Sv. Then, (7)
turns into

d(u, v) = d(Tu, Tv)

≤ λmax {d(u, v), d(u, Sv), d(v, Tu)}+ F (d(u, Tu), d(v, Sv))

= λd(u, v) + F (0, 0).

Since F (0, 0) = 0, we have (1 − λ)d(u, v) ≤ 0 which yields that d(u, v) = 0, a
contradiction. Hence the common fixed point of S and T is unique. �

The following example illustrates Theorem 2.1.

Example 2.2. Let X = {0, 1, 12 ,
1
3 , . . .} be the metric space endowed with the

usual metric. Let T, S : X → X be defined by T (0) = 0, T ( 1
n ) = 1

n+1 and

S(0) = 0, S( 1
n ) = 1

n+2 for all n ≥ 1. If we choose λ = 1
2 and F (x, y) =

3[
√
x+
√
y] for all x, y ∈ [0,∞), then we have the following three cases:

Case-I: For x = 0 and y = 1
n , n ≥ 1, we see that

d(Tx, Sy) =
1

n+ 2
≤ 1

2n
+ 3

(√
2

n(n+ 2)

)
= λmax{d(x, y), d(x, Sy), d(y, Tx)}+ F (d(x, Tx), d(y, Sy)).

Case-II: For x = 1
n , n ≥ 1 and y = 0, we get

d(Tx, Sy) =
1

n+ 1
≤ 1

2n
+ 3

(
1√

n(n+ 1)

)
= λmax{d(x, y), d(x, Sy), d(y, Tx)}+ F (d(x, Tx), d(y, Sy)).

Case-III: For x = 1
n and y = 1

m , n,m ≥ 1, it follows that

d(Tx, Sy) = | 1

n+ 1
− 1

m+ 2
|

≤ 1

2
max{| 1

n
− 1

m
|, | 1
n
− 1

m+ 2
|, | 1

n+ 1
− 1

m
|}

+ 3

(
1√

n(n+ 1)
+

√
2

m(m+ 2)

)
= λmax{d(x, y), d(x, Sy), d(y, Tx)}+ F (d(x, Tx), d(y, Sy)).
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Hence T and S satisfy the contractive condition (7). If T and S satisfy the
contractive condition (5), then for x = 0 and y = 1

n , n ≥ 1 we have

d(Tx, Sy) =
1

n+ 2
≤ λd(x, y) +K{d(x, Tx) + d(y, Sy)} =

λ

n
+

2K

n(n+ 2)

for some λ ∈ [0, 1) and K ∈ [0,+∞). From which it follows that 1 ≤ λn+2
n + 2K

n ,
taking n → ∞ we see that λ ≥ 1, a contradiction. Therefore, T and S do not
satisfy the contractive condition (5). Here both T and S are asymptotically
regular, orbitally continuous and 0 is the unique common fixed point of T and
S.

Corollary 2.3 ([12]). Let (X, d) be a complete metric space and T, S : X → X
be two asymptotically regular maps satisfying (5). Then T and S have a unique
common fixed point provided T and S are either k-continuous for some k ≥ 1
or orbitally continuous.

Proof. We have

d(Tx, Sy)

≤ λd(x, y) +K{d(x, Tx) + d(y, Sy)}
= λmax{d(x, y), d(x, Sy), d(y, Tx)}+ F (d(x, Tx), d(y, Sy)) for all x, y ∈ X.

Where F (x, y) = K(x + y) is continuous at (0, 0) ∈ [0,∞)2 and F (0, 0) = 0,
i.e., F ∈ F .

Hence from Theorem 2.1, S and T have a unique common fixed point in
X. �

The following results are easy consequences of Theorem 2.1.

Corollary 2.4. Let (X, d) be a complete metric space and T, S : X → X be two
asymptotically regular mappings satisfying (8) for all x, y ∈ X. Then T and
S have a unique common fixed point provided T and S are either k-continuous
for some k ≥ 1 or orbitally continuous.

Corollary 2.5. Let (X, d) be a complete metric space and T, S : X → X be two
asymptotically regular mappings satisfying (9) for all x, y ∈ X. Then T and
S have a unique common fixed point provided T and S are either k-continuous
for some k ≥ 1 or orbitally continuous.

In the following we give a Jungck type common fixed point theorem for a
pair of mappings.

Theorem 2.6. Let (X, d) be a complete metric space and T, S : X → X be
two mappings such that T is asymptotic regular with respect to S and satisfy
the following condition

(18)
d(Tx, Ty) ≤ λmax {d(Sx, Sy), d(Tx, Sy), d(Sx, Ty)}

+ F (d(Tx, Sx), d(Ty, Sy))
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for all x, y ∈ X, for some λ ∈ [0, 1) and for some F ∈ F . Then T and S have
a unique common fixed point provided T and S are (T, S)-orbitally continuous
and compatible.

Proof. Uniqueness of fixed point clearly follows form the equation (18). Now
we prove the existence of common fixed point of T and S.

Since T is asymptotic regular with respect to S at x0 ∈ X, so there exists
a sequence {xn} in X such that Txn = Sxn+1 = yn (say) for all n = 1, 2, . . .
and d(Sxn+1, Sxn+2)→ 0 as n→∞, i.e., d(yn, yn+1)→ 0 as n→∞.

First we will show that {yn} is a Cauchy sequence in X. For p = 1, 2, 3, . . .
we have,

d(yn+p, yn)

≤ d(yn+p, yn+p+1) + d(yn+p+1, yn+1) + d(yn+1, yn)

≤ d(yn+p, yn+p+1) + λMn,p + F (d(yn+p+1, yn+p), d(yn+1, yn))

+ d(yn+1, yn),(19)

by using (18) where Mn,p = max{d(yn+p, yn), d(yn+p+1, yn), d(yn+p, yn+1)}.
Now if Mn,p = d(yn+p, yn), then from (19) we get,

(1− λ)d(yn+p, yn)

≤ d(yn+p, yn+p+1) + F (d(yn+p+1, yn+p), d(yn+1, yn)) + d(yn+1, yn).(20)

Again if Mn,p = d(yn+p+1, yn), then by triangle inequality,

Mn,p ≤ d(yn+p+1, yn+p) + d(yn+p, yn) and then from (19)

we get,

(1− λ)d(yn+p, yn)

≤ (1 + λ)d(yn+p, yn+p+1) + F (d(yn+p+1, yn+p), d(yn+1, yn))

+ d(yn+1, yn).(21)

Finally if Mn,p = d(yn+p, yn+1), then by triangle inequality,

Mn,p ≤ d(yn+p, yn) + d(yn, yn+1) and then from (19),

we get

(1− λ)d(yn+p, yn)

≤ d(yn+p, yn+p+1) + F (d(yn+p+1, yn+p), d(yn+1, yn))

+ (1 + λ)d(yn+1, yn).(22)

Now combining (20), (21) and (22) we can write,

(1− λ)d(yn+p, yn)

≤ (1 + λ){d(yn+p, yn+p+1) + d(yn+1, yn)}
+ F (d(yn+p+1, yn+p), d(yn+1, yn)).(23)
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Therefore using the properties of F from (23) it follows that, d(yn+p, yn) → 0
whenever n→∞ for any p = 1, 2, . . ., i.e., {yn} is a Cauchy sequence in X and
due to completeness of X, limn yn = limn Txn = limn Sxn+1 = u ∈ X (say).

Since T and S are (T, S)-orbitally continuous so,

lim
n
TTxn = lim

n
TSxn = Tu and lim

n
STxn = lim

n
SSxn = Su.

Since T and S are compatible, so d(TSxn, STxn)→ 0 as n→∞, which implies
Tu = Su. Again by compatibility of T and S we have, T (Tu) = T (Su) =
S(Tu) = S(Su).
Now using (18) we have,

d(Tu, TTu)

≤ λmax{d(Su, STu), d(Tu, STu), d(Su, TTu)}+ F (d(Tu, Su), d(TTu, STu))

= λd(Tu, TTu) + F (0, 0).

Since F (0, 0) = 0 and λ ∈ [0, 1) we have, d(Tu, TTu) = 0. Therefore, Tu =
T (Tu) = S(Tu), i.e., Tu ∈ X is a common fixed point of T and S. �

We now give an example which illustrates Theorem 2.6.

Example 2.7. Let us take X = [0,∞) equipped with the usual metric of R.
Let T, S : X → X be defined by Tx = x

x+1 and Sx = 2x
x+2 for all x ≥ 0. Then T

and S satisfy the contractive condition (18) for λ = 1
2 and F (x, y) =

√
x+
√
y

for all x, y ∈ [0,∞). But it can be easily verified that T, S do not satisfy the
contractive condition (4). Here T is asymptotically regular with respect to S, T
and S both are (T, S)-orbitally continuous and compatible and 0 is the unique
common fixed point of T and S.

From Theorem 2.6 we get the immediate corollary.

Corollary 2.8 ([3]). Let (X, d) be a complete metric space and T, S : X → X
be two mappings such that T is asymptotic regular with respect to S satisfying
(4). Then T and S have a unique common fixed point provided T and S are
(T, S)-orbitally continuous and compatible.

From Theorems 2.1 and 2.6 we get our next corollary.

Corollary 2.9 ([13]). Let (X, d) be a complete metric space and T : X → X
be an asymptotic regular map satisfying

d(Tx, Ty) ≤ λmax {d(x, y), d(y, Tx), d(x, Ty)}+ F (d(x, Tx), d(y, Ty))

for all x, y ∈ X, for some λ ∈ [0, 1) and for some F ∈ F . Then T has a unique
fixed point provided T is orbitally continuous in X.

Proof. In Theorem 2.1 if we consider S = T , then we get our required result.
On the other hand in Theorem 2.6, by taking S ≡ I, where I is the identity

map on X the result follows immediately. �
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The following common fixed point theorem, an extension of Jungck’s result
[9] was given in [8].

Theorem 2.10 ([8]). Let S be a continuous self-mapping on a complete metric
space (X, d). Then S has a fixed point if and only if there exist constants
a, b, c ∈ [0, 1) with a + b + c < 1 and a continuous self-mapping T on X
satisfying the following conditions:

(a) TX ⊆ SX;
(b) T ◦ S = S ◦ T ;
(c) d(Tx, Ty) ≤ ad(Tx, Sx) + bd(Ty, Sy) + cd(Sx, Sy) for all x, y ∈ X.
Indeed, S and T have a unique common fixed point if the conditions defined

above hold.

Theorem 2.10 is a particular case of Theorem 2.6 as condition (c) of Theorem
2.10 implies (18). Continuities of S and T imply orbital continuity of S and T .
Also, compatibility of S and T implies commutativity of S and T [condition
(b)].

In the following theorem we obtain a sequential fixed point for a mapping
which is the point-wise limit of a sequence of functions satisfying a particular
contractive condition.

Let us consider the class F ′ of all functions F : [0,∞) × [0,∞) → [0,∞)
satisfying the following conditions:

(i) F (0, 0) = 0;
(ii) F is everywhere continuous in [0,∞)× [0,∞).

Theorem 2.11. Let (X, d) be a complete metric space and {Tn}n∈N, T are self
mappings on X. Suppose that {Tn}n∈N and T satisfy the following conditions:

(i) there exists F ∈ F ′ and for each n ∈ N there exists 0 ≤ λn < 1 such that

(24)
d(Tnx, Tny) ≤ λn max{d(x, y), d(x, Tny), d(y, Tnx)}

+ F (d(x, Tnx), d(y, Tny))

for all x, y ∈ X, where supn λn = λ < 1, i.e., each Tn, n ∈ N, is Ćirić-
Proinov-Górnicki type mapping;

(ii) {Tn}n≥1 converges point-wise to the mapping T ;
(iii) mappings T and for each n ∈ N, Tn are either k-continuous for k ≥ 1 or

orbitally continuous and asymptotically regular.

Then T is also a Ćirić-Proinov-Górnicki type mapping for λ < 1 and F ∈ F ′.
Also the sequence of unique fixed points {un}n≥1 of {Tn}n≥1 converges to the
unique fixed point of T .

Proof. Let x, y ∈ X be chosen as arbitrary. Then for any n ∈ N

d(Tx, Ty) ≤ d(Tx, Tnx) + d(Tnx, Tny) + d(Tny, Ty)

≤ d(Tx, Tnx) + d(Tny, Ty) + λn max{d(x, y), d(x, Tny), d(y, Tnx)}
+ F (d(x, Tnx), d(y, Tny))



174 R. K. BISHT, S. PANJA, K. ROY, AND M. SAHA

≤ d(Tx, Tnx) + d(Tny, Ty) + F (d(x, Tnx), d(y, Tny))

+ λmax{d(x, y), d(x, Ty) + d(Ty, Tny), d(y, Tx) + d(Tx, Tnx)}.(25)

By taking n→∞, due to continuity of d, from (25) we get

d(Tx, Ty) ≤ λmax{d(x, y), d(x, Ty), d(y, Tx)}+ F (d(x, Tx), d(y, Ty)).(26)

Since x, y are arbitrary, T is a Ćirić-Proinov-Górnicki type mapping for λ < 1
and F ∈ F ′. Since condition (iii) holds it follows that T has a unique fixed
point u in X. Now,

d(Tnun, Tnu)

≤ λn max{d(un, u), d(u, Tnun), d(un, Tnu)}+ F (d(un, Tnun), d(u, Tnu))

= λn max{d(un, u), d(un, Tnu)}+ F (0, d(u, Tnu))

≤ λmax{d(un, u), d(un, Tnu)}+ F (0, d(u, Tnu))

≤ λ[d(un, u) + d(Tnun, Tnu)] + F (0, d(u, Tnu)) for all n ∈ N.(27)

Thus d(Tnun, Tnu) ≤ λ
1−λd(un, u) + 1

1−λF (0, d(u, Tnu)) for all n ∈ N. Now due

to continuity of d it follows that d(Tnun, Tnu) → 0 as n → ∞. Therefore we
have

d(un, u) = d(Tnun, Tu)

≤ d(Tnun, Tnu) + d(Tnu, Tu)→ 0 as n→∞.(28)

Hence the sequence of unique fixed points {un}n≥1 of {Tn}n≥1 converges to
the unique fixed point u of T. �

The following example illustrates Theorem 2.11.

Example 2.12. Let us consider the metric space X = [0,∞) equipped with
the usual metric. Let Tn : X → X be defined by Tn(x) = nx+x

nx+n+1 for all

x ∈ X and for all n ∈ N. Then {Tn}n≥1 converges point-wise to the function

T (x) = x
x+1 for all x ∈ X. For each n ≥ 1, Tn is a Ćirić-Proinov-Gónicki

type mapping with λn = 1
2 and F (x, y) =

√
x +
√
y for all x, y ∈ X without

being Górnicki type mapping (the contractive condition (3)). The mappings
T and Tn, n ∈ N, are continuous and asymptotically regular. Clearly T is a
Ćirić-Proinov-Górnicki type mapping with λ = 1

2 and F (x, y) =
√
x +
√
y for

all x, y ∈ X with the unique fixed point 0 which is the limit of the sequence of
unique fixed points {0} of {Tn}n≥1.
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