DOI QR코드

DOI QR Code

INFRA-TOPOLOGIES REVISITED: LOGIC AND CLARIFICATION OF BASIC NOTIONS

  • Received : 2020.12.04
  • Accepted : 2021.07.12
  • Published : 2022.01.31

Abstract

In this paper we adhere to the definition of infra-topological space as it was introduced by Al-Odhari. Namely, we speak about families of subsets which contain ∅ and the whole universe X, being at the same time closed under finite intersections (but not necessarily under arbitrary or even finite unions). This slight modification allows us to distinguish between new classes of subsets (infra-open, ps-infra-open and i-genuine). Analogous notions are discussed in the language of closures. The class of minimal infra-open sets is studied too, as well as the idea of generalized infra-spaces. Finally, we obtain characterization of infra-spaces in terms of modal logic, using some of the notions introduced above.

Keywords

References

  1. A. M. Al-Odhari, On infra-topological spaces, Int. J. Math. Archive 6 (2015), no. 11, 179-184.
  2. A. M. Al-Odhari, I-continuous functions and I*-continuous functions on infra topological spaces, Int. J. Math. Archive 7 (2016), no. 3, 18-22.
  3. J. Avila and F. Molina, Generalized weak structures, Int. Math. Forum 7 (2012), no. 49-52, 2589-2595.
  4. M. Bozic and K. Dosen, Models for normal intuitionistic modal logics, Studia Logica 43 (1984), no. 3, 217-245. https://doi.org/10.1007/BF02429840
  5. C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, Minimal open sets on generalized topological space, Proyecciones 36 (2017), no. 4, 739-751. https://doi.org/10.4067/s0716-09172017000400739
  6. S. Chakrabarti and H. Dasgupta, Infra-topological space and its applications, Rev. Bull. Calcutta Math. Soc. 17 (2009), no. 1-2, 13-22.
  7. S. Chakrabarti and H. Dasgupta, Touching sets and its applications, Int. J. Math. Anal. 8 (2014), no. 52, 2577-2589. https://doi.org/10.12988/ijma.2014.48262
  8. G. Choquet, Convergences, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 57-112.
  9. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357. https://doi.org/10.1023/A:1019713018007
  10. S. Dhanalakshmi and R. Malini Devi, On generalized regular infra-closed sets, Int. J. Math. Archive 7 (2016), no. 8, 33-36.
  11. F. El Khoury, Iris Biometric Model for Secured Network Access, CRC Press, Taylor & Francis Group 2017, pp. 37-41.
  12. R. Jamunarani, P. Jeyanthi, and T. Noiri, On generalized weak structures, J. Algorithm Comput. 47 (2016), 21-26.
  13. E. Korczak-Kubiak, A. Loranty, and R. J. Pawlak, Baire generalized topological spaces, generalized metric spaces and infinite games, Acta Math. Hungar. 140 (2013), no. 3, 203-231. https://doi.org/10.1007/s10474-013-0304-1
  14. A. S. Mashhour, A. A. Allam, F. S. Mahmoud, and F. H. Khedr, On supratopological spaces, Indian J. Pure Appl. Math. 14 (1983), no. 4, 502-510.
  15. E. Pacuit, Neighborhood Semantics for Modal Logic, Short Textbooks in Logic, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-67149-9
  16. R. J. Pawlak and A. Loranty, The generalized entropy in the generalized topological spaces, Topology Appl. 159 (2012), no. 7, 1734-1742. https://doi.org/10.1016/j.topol.2011.05.043
  17. A. Piekosz, Generalizations of topological spaces, https://www.researchgate.net/publication/314392123_Generalizations_of_Topological_Spaces.
  18. V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mecan. Teor. Fasc. II 18 (2000), no. 23, 31-41.
  19. R. Seethalakshmi and M. Kamaraj, Extension of binary topology, Int. J. Comput. Sci. Engineering 7 (2019), no. 5, 194-197. https://doi.org/10.26438/ijcse/v7si5.194197
  20. H. Soldano, A modal view on abstract learning and reasoning, Ninth Symposium on Abstraction, Reformulation, and Approximation, SARA 2011. https://bioinfo.mnhn.fr/abi/people/soldano/draftSARA2011.pdf.
  21. K. Vaiyomathi and F. Nirmala Irudayam, Infra generalized b-closed sets in infratopological space, Int. J. Math. Trends Technology 47 (2017), no. 1, 56-65. https://doi.org/10.14445/22315373/IJMTT-V47P508
  22. T. Witczak, Generalized topological semantics for weak modal logics, https://arxiv.org/pdf/1904.06099.pdf.
  23. T. Witczak, Intuitionistic modal logic based on neighborhood semantics without superset axiom, https://arxiv.org/pdf/1707.03859.pdf.