RATIONAL HOMOTOPY TYPE OF MAPPING SPACES BETWEEN COMPLEX PROJECTIVE SPACES AND THEIR EVALUATION SUBGROUPS

Jean-Baptiste Gatsinzi

Abstract

We use L_{∞} models to compute the rational homotopy type of the mapping space of the component of the natural inclusion $i_{n, k}$: $\mathbb{C} P^{n} \hookrightarrow \mathbb{C} P^{n+k}$ between complex projective spaces and show that it has the rational homotopy type of a product of odd dimensional spheres and a complex projective space. We also characterize the mapping aut ${ }_{1} \mathbb{C} P^{n} \rightarrow$ $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ and the resulting G-sequence.

1. Introduction

Let $f: X \rightarrow Y$ be a map between simply connected CW-complexes of finite type. We denote by $\operatorname{map}(X, Y ; f)$ the path component of f in the space of continuous mappings from X to Y. The study of the rational homotopy type of $\operatorname{map}(X, Y ; f)$ was initiated by Haefliger [10] who describes its Sullivan model. Afterwards there were attempts to find a Quillen model of map $(X, Y ; f)$ from either a Sullivan or a Quillen model of f. Chain complexes of which the homology coincides with rational homotopy groups of function spaces were investigated $[8,12,13]$. Those chain complexes were later developed into models of function spaces [2-5].

Following [5] we describe in this paper an L_{∞} model of the inclusion $i_{n, k}$: $\mathbb{C} P^{n} \hookrightarrow \mathbb{C} P^{n+k}$. We shall use rational homotopy theory for which the standard reference is [6].

The notion of L_{∞}-algebra was introduced by Lada [11] and we remind here the definition.

Definition 1. A permutation $\sigma \in S_{n}$ is called an $(i, n-i)$-shuffle if $\sigma(1)<$ $\cdots<\sigma(i)$ and $\sigma(i+1)<\cdots<\sigma(n)$, where $i=1, \ldots, n$. For graded objects x_{1}, \ldots, x_{n}, the Koszul sign $\epsilon(\sigma)$ is determined by

$$
x_{1} \wedge \cdots \wedge x_{n}=\epsilon(\sigma) x_{\sigma(1)} \wedge \cdots \wedge x_{\sigma(n)}
$$

It depends not only of the permutation σ but also of degrees of x_{1}, \ldots, x_{n}.

[^0]We assume that all vector spaces are over the field of rational numbers \mathbb{Q}.
Definition 2. An L_{∞}-algebra or a strongly homotopy Lie algebra is a graded vector space $L=\oplus_{i \geq 0} L_{i}$ with maps $\ell_{k}: L^{\otimes^{k}} \rightarrow L$ of degree $k-2$ such that
(1) ℓ_{k} is graded skew symmetric, that is, for a k-permutation σ

$$
\ell_{k}\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)=\operatorname{sgn}(\sigma) \epsilon(\sigma) \ell_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

where $\operatorname{sgn}(\sigma)$ is the sign of σ.
(2) There are some generalized Jacobi identities

$$
\sum_{i+j=n+1} \sum_{\sigma} \epsilon(\sigma)(-1)^{i(j-1)} \ell_{j}\left(\ell_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right)=0,
$$

where the summation extends to all $(i, n-i)$ shuffles of the symmetric group S_{n}.

If $\ell_{k}=0$ for $k \geq 3$, one retrieves the definition of a graded differential Lie algebra (L, d) where $d=\ell_{1}$ and ℓ_{2} is the Lie bracket.

Let $\left(L, \ell_{k}\right)$ be an L_{∞} algebra and $s L$ the suspension of L, and $C_{\infty}(L)=$ $(\wedge s L, d)$ the generalized Cartan-Chevalley-Eilenberg functor (see [6, §22]). One gets linear mappings $d_{k}: \wedge^{k}(s L) \rightarrow s L$ defined by

$$
d_{k}\left(s x_{1} \wedge \cdots \wedge s x_{k}\right)=(-1)^{\frac{k(k-1)}{2}} \ell_{k}\left(x_{1}, \ldots, x_{k}\right)
$$

each of which extends into a codifferential on the coalgebra $\wedge s L$. This gives an equivalence between L_{∞} structures on L and codifferentials on $\wedge s L$ [11]. Moreover if L is of finite type, then $C^{\infty}(L)=\left(\wedge(s L)^{\#}, d\right)$ is a commutative differential graded algebra (cdga for short). The differential $d=d_{1}+\cdots+d_{k}+$ \cdots is defined by

$$
\left\langle d_{k} v, s x_{1} \wedge \cdots \wedge s x_{k}\right\rangle=(-1)^{\epsilon}\left\langle v, \ell_{k}\left(x_{1}, \ldots, x_{k}\right)\right\rangle,
$$

where $v \in(s L)^{\#}$ and $\epsilon=\sum_{i=1}^{k-1}(k-i)\left|x_{i}\right|$.
Definition 3. Two cdga's (A, d) and (B, d) have the same homotopy type if they are linked by a sequence of quasi-isomorphisms

$$
(A, d)=A_{0} \rightarrow A_{1} \leftarrow A_{2} \cdots \rightarrow A_{n-1} \leftarrow A_{n}=(B, d) .
$$

Let V be a graded vector space. A Sullivan algebra $(\wedge V, d)$ is the free graded commutative algebra generated by V together with a filtration $V(0) \subset V(1) \subset$ $\cdots \subset V$ such that $d V(i) \subset \wedge V(i-1)$. It is called minimal if $d V \subset \wedge^{\geq 2} V$. A Sullivan model of a simply connected space X is a Sullivan algebra $(\wedge V, d)$ such that there exists a quasi-isomorphism $\varphi:(\wedge V, d) \rightarrow A_{P L}(X)$, where $A_{P L}(X)$ denotes the cdga of piecewise linear forms of X [16]. A cdga model of X is a cdga (A, d) which has the same homotopy type as $A_{P L}(X)$.
Definition 4. If $f: X \rightarrow Y$ is a map between simply connected spaces of finite type, then there is a cdga map $\phi:(\wedge V, d) \rightarrow(B, d)$, called a model of f, where (B, d) and $(\wedge V, d)$ are respective cdga models of X and Y, respectively.

Definition 5. Let L be an L_{∞}-algebra of finite type. Then L is called an L_{∞} model of a topological space X if $C^{\infty}(L)$ is a Sullivan model of X. It is minimal if $\ell_{1}=0$. In this case $\pi_{*}(\Omega X) \otimes \mathbb{Q} \cong L$.

In this note, we give another proof of the following result using L_{∞} models of function spaces (see [15], Example 3.4).
Theorem 6. The function space $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ has the rational homotopy type of $\mathbb{C} P^{k} \times S^{2 k+3} \times \cdots \times S^{2(n+k)+1}$.

Moreover we study evaluation subgroups of the mapping aut ${ }_{1} \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+k}$ and prove the following result.
Theorem 7. The G-sequence associated with the inclusion

$$
\text { aut }_{1} \mathbb{C} P^{n} \rightarrow \operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)
$$

is not exact.

2. L_{∞}-models of function spaces

Definition 8. Let $\phi:(\wedge V, d) \rightarrow(B, d)$ be a morphism of cdga's. A ϕ derivation of degree k is a linear mapping $\theta:(\wedge V)^{n} \rightarrow B^{n-k}$ such that $\theta(a b)=\theta(a) \phi(b)+(-1)^{k|a|} \phi(a) \theta(b)$. We denote by $\operatorname{Der}(\wedge V, B ; \phi)$ the \mathbb{Z}-graded vector space of all ϕ-derivations. The differential on $\operatorname{Der}(\wedge V, B ; \phi)$ is defined by $\delta \theta=d \theta-(-1)^{k} \theta d$.

Define $\widetilde{\operatorname{Der}}(\wedge V, B ; \phi)$ as

$$
\widetilde{\operatorname{Der}}(\wedge V, B, \phi)_{i}= \begin{cases}\operatorname{Der}(\wedge V, B ; \phi)_{i}, & i>1, \\ \left\{\theta \in \operatorname{Der}(\wedge V, B ; \phi)_{1}: \delta \theta=0\right\}, & i=1 .\end{cases}
$$

If $\varphi_{1}, \ldots, \varphi_{k} \in \widetilde{\operatorname{Der}}(\wedge V, B ; \phi)$ are ϕ-derivations of respective degrees n_{1}, \ldots, n_{k}, define

$$
\begin{aligned}
& {\left[\varphi_{1}, \ldots, \varphi_{k}\right](v) } \\
= & (-1)^{n_{1}+\cdots+n_{k}-1} \sum\left(\sum_{i_{1}, \ldots, i_{k}} \epsilon \phi\left(v_{1} \cdots \hat{v}_{i_{1}} \cdots \hat{v}_{i_{k}} \cdots v_{m}\right) \varphi_{1}\left(v_{i_{1}}\right) \cdots \varphi_{k}\left(v_{i_{k}}\right)\right),
\end{aligned}
$$

where $d v=\sum v_{1} \cdots v_{m}$ and ϵ is the corresponding Koszul sign of the permutation

$$
\left(\varphi_{1}, \ldots, \varphi_{k}, v_{1}, \ldots, v_{m}\right) \rightarrow\left(v_{1}, \ldots, \hat{v}_{i_{1}}, \ldots, \hat{v}_{i_{k}}, \ldots, v_{m}, \varphi_{1}, v_{i_{1}}, \ldots, \varphi_{k}, v_{i_{k}}\right)
$$

We note that $\left[\varphi_{1}, \ldots, \varphi_{k}\right]$ is of degree $n_{1}+\cdots+n_{k}-1$. Now define linear maps ℓ_{k} of degree $k-2$ on $s^{-1} \widetilde{\operatorname{Der}}(\wedge V, B, \phi)$ by

$$
\ell_{1}\left(s^{-1} \varphi\right)=-s^{-1} \delta \varphi, \quad \ell_{k}\left(s^{-1} \varphi_{1}, \ldots, s^{-1} \varphi_{k}\right)=(-1)^{\epsilon_{k}} s^{-1}\left[\varphi_{1}, \ldots, \varphi_{k}\right],
$$

where $\epsilon_{k}=\sum_{i=1}^{k-1}(k-i)\left|\varphi_{i}\right|$.
Proposition 9 (Lemma 3.3,[5]). If $\phi:(\wedge V, d) \rightarrow(B, d)$ is a Sullivan model of a mapping $f: X \rightarrow Y$ between simply connected spaces and V is finite dimensional, then $\left(s^{-1} \widetilde{\operatorname{Der}}(\wedge V, B ; \phi), \ell_{k}\right)$ is an L_{∞} model of $\operatorname{map}(X, Y ; f)$.

3. Component of the inclusion $\mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+k}$

Recall that the minimal Sullivan model of $\mathbb{C} P^{n}$ is given by $\left(\wedge\left(x_{2}, x_{2 n+1}\right), d\right)$ where $d x_{2}=0, d x_{2 n+1}=x_{2}^{n+1}$. Our objective is to compute an L_{∞} model of the component of the inclusion $\mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+k}$. For $k=0$, one gets a model of aut ${ }_{1} \mathbb{C} P^{n}=\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n} ; I d\right)$ from the differential Lie algebra (L, δ) of derivations of $\left(\wedge\left(x_{2}, x_{2 n+1}\right), d\right)$, of which $H_{*}(L, \delta)$ is spanned by $\left\{z_{3}, z_{5}, \ldots, z_{2 n+1}\right\}[7, \S 3]$. Therefore aut $\mathbb{C} P^{n}$ has the rational homotopy type of the product $S^{3} \times S^{5} \times \cdots \times S^{2 n+1}$. This result was also proved by Møller and Raussen using another method [15, Example 3.4].

Let $f:(\wedge V, d) \rightarrow(B, d)$ be a morphism of differential graded algebras. For $v \in V$ and $b \in B$ we denote by (v, b) the unique f-derivation θ such that $\theta(v)=b$ and zero on the remaining generators of $\wedge V$.

From now on we assume that $k \geq 1$. A model of the inclusion

$$
i_{n, k}: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+k}
$$

is given by

$$
\psi:(A, d)=\left(\wedge\left(x_{2}, x_{2 n+2 k+1}\right) \rightarrow\left(\wedge\left(y_{2}, y_{2 n+1}\right), d\right)=(B, d),\right.
$$

where $\psi\left(x_{2}\right)=y_{2}, \psi\left(x_{2 n+2 k+1}\right)=y_{2}^{k} y_{2 n+1}$. We consider the composition

$$
\phi: A=\left(\wedge\left(x_{2}, x_{2 n+2 k+1}\right) \xrightarrow[\rightarrow]{\psi}\left(\wedge\left(y_{2}, y_{2 n+1}\right), d\right)=B \simeq\left(\wedge\left(y_{2}\right) /\left(y_{2}^{n+1}\right), 0\right) .\right.
$$

Hence $\phi\left(x_{2}\right)=y_{2}$ and $\phi\left(x_{2 n+2 k+1}\right)=0$. The induced map

$$
(\operatorname{Der}(A, B ; \psi), \delta) \rightarrow\left(\operatorname{Der}\left(A, H^{*}(B) ; \phi\right), \delta\right)
$$

is a quasi-isomorphism [1]. In the sequel we compute

$$
\widetilde{\operatorname{Der}}\left(\wedge\left(x_{2}, x_{2 n+2 k+1}\right), \wedge\left(y_{2}\right) /\left(y_{2}^{n+1}\right) ; \phi\right)
$$

and determine its brackets. As a vector space

$$
\widetilde{\operatorname{Der}}\left(\wedge\left(x_{2}, x_{2 n+2 k+1}\right), \wedge\left(y_{2}\right) /\left(y_{2}^{n+1}\right) ; \phi\right)
$$

is spanned by

$$
\left\{\beta_{2}, \alpha_{2 k+2 i-1}, i=1, \ldots, n+1\right\},
$$

where $\alpha_{2 k+2 i-1}=\left(x_{2 n+2 k+1}, y_{2}^{n-i+1}\right)$ and $\beta_{2}=\left(x_{2}, 1\right)$. Note that $\left|\beta_{2}\right|=2$ and $\left|\alpha_{2 k+2 i-1}\right|=2 k+2 i-1$. Computations show that the only non zero brackets are given by $\underbrace{\left[\beta_{2}, \ldots, \beta_{2}\right]}_{k+i}=\alpha_{2 k+2 i-1}$ for $i=1, \ldots, n+1$.

We deduce the following result (see [15] for a different proof).
Proposition 10. The function space $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ has a Sullivan model of the form

$$
\left(\wedge\left(z_{2}, z_{2 k+1}, \ldots, z_{2 k+2 n+1}\right), d\right)
$$

where $d z_{2}=0, d z_{2 k+1}=z_{2}^{k+1}, \ldots, d z_{2 k+2 n+1}=z_{2}^{k+n+1}$.

Proof. An L_{∞} model $\left(L, \ell_{k}\right)$ of $\operatorname{map}\left(\mathbb{C} P(n), \mathbb{C} P(n+k) ; i_{n, k}\right)$ is spanned by

$$
\left\langle s^{-1} \beta_{2}, s^{-1} \alpha_{2 k+2 i-1}, i=1, \ldots, n+1\right\rangle .
$$

Moreover $\ell_{j}=0$ for $j=1, \ldots, k$ and $\ell_{k+i}\left(s^{-1} \beta_{2}, \ldots, s^{-1} \beta_{2}\right)=s^{-1} \alpha_{2 k+2 i-1}$, for $i=1, \ldots, n+1$. Therefore

$$
\left.C^{\infty}(L)=\wedge\left(z_{2}, z_{2 k+1}, z_{2 k+3}, \ldots, z_{2 k+2 n+1}\right), d\right), \quad d z_{2}=0, d z_{2 k+2 i+1}=z_{2}^{k+i+1}
$$

where $0 \leq i \leq n$.
Theorem 11. The function space $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ has the rational homotopy type of $\mathbb{C} P^{k} \times S^{2 k+3} \times \cdots \times S^{2(n+k)+1}$.

Proof. By the above result, a Sullivan model of $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ is given by

$$
\left(\wedge\left(x_{2}, x_{2 k+1}, x_{2 k+3}, \ldots, x_{2 n+2 k+1}\right)\right.
$$

where $d x_{2}=0, d x_{2 i+1}=x_{2}^{i+1}, i=k, k+1, \ldots, k+n$. We consider the relative Sullivan model

$$
\left(\wedge\left(x_{2}, x_{2 k+1}\right), d\right) \rightarrow\left(\wedge\left(x_{2}, x_{2 k+1}\right) \otimes \wedge x_{2 k+3}, D\right)
$$

where

$$
d x_{2}=0, d x_{2 k+}=x_{2}^{k+1}, D x_{2}=d x_{2}, D x_{2 k+1}=d x_{2 k+1}, D x_{2 k+3}=x_{2}^{k+2}
$$

It is a Sullivan model of the fibration $S^{2 k+3} \rightarrow E \xrightarrow{p} \mathbb{C} P^{k}$, where p is classified by a map $f: \mathbb{C} P^{k} \rightarrow B$ aut ${ }_{1} S^{2 k+3}$. Using the algebra of derivations on the minimal Sullivan model of $S^{2 k+3}$ [16], it is easily seen that B aut $S^{2 k+3}$ has the rational homotopy type of $K(\mathbb{Q}, 2 k+4)$ [7, Proposition 2.1].

Moreover equivalence classes

$$
\left[\mathbb{C} P^{k}, K(\mathbb{Q}, 2 k+4)\right]
$$

are in a bijective correspondence with $H^{2 k+4}\left(\mathbb{C} P^{k}, \mathbb{Q}\right)=\{0\}$. Therefore the classifying map f is rationally trivial. So we deduce that the fibration is trivial. Hence the cdga

$$
(A, d)=\left(\wedge\left(x_{2}, x_{2 k+1}, x_{2 k+3}\right), d\right), d x_{2}=0, d x_{2 k+1}=x_{2}^{k+1}, d x_{2 k+3}=x_{2}^{k+2}
$$

and

$$
\left(\wedge\left(x_{2}, x_{2 k+1}\right) \otimes \wedge z_{2 k+3}, d\right), d x_{2}=0, d x_{2 k+1}=x_{2}^{k+1}, d z_{2 k+3}=0
$$

are isomorphic. We deduce that the cdga (A, d) is a Sullivan model of $\mathbb{C} P^{k} \times$ $S^{2 k+3}$. It follows from an induction argument that $\operatorname{map}\left(\mathbb{C} P^{k}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ has the rational homotopy type of $\mathbb{C} P^{k} \times S^{2 k+3} \times \cdots \times S^{2(n+k)+1}$.

Recall that a Sullivan algebra $(\wedge V, d)$ is called formal if there is a quasiisomorphism $(\wedge V, d) \rightarrow H^{*}(\wedge V, d)$. Spheres and complex projective spaces are formal. Moreover a product of formal spaces is also formal. We deduce that:

Corollary 12. The function space $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ is formal.

4. Evaluation subgroups of the inclusion $i_{n, k}: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+k}$

We consider the inclusion $i_{n, k}: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+k}$ and the corresponding Sullivan model ϕ of the previous section given by the composition

$$
\left.\phi: A=\left(\wedge\left(x_{2}, x_{2 n+2 k+1}\right), d\right) \xrightarrow{\psi} \wedge\left(y_{2}, y_{2 n+1}\right), d\right)=B \xrightarrow[\simeq]{\gamma} H^{*}(B) .
$$

Forgetting the desuspension, a model of the inclusion $\left(i_{n, k}\right)_{*}:$ aut $_{1} \mathbb{C} P^{n} \rightarrow$ $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ is given by

$$
\phi^{*}:\left(\operatorname{Der}\left(B, H^{*}(B) ; \gamma\right), \delta\right) \rightarrow\left(\operatorname{Der}\left(A, H^{*}(B) ; \phi\right), \delta\right)
$$

We now characterize the map ϕ^{*} when $k>n$.
Theorem 13. If $k>n$, then the induced map

$$
\left.\phi^{*}:\left(\operatorname{Der}\left(B, H^{*}(B) ; \gamma\right), \delta\right) \longrightarrow\left(\operatorname{Der}\left(A, H^{*}(B), \phi\right), \delta\right)\right)
$$

is homotopy trivial.
Proof. We note that $L=\operatorname{Der}\left(B, H^{*}(B) ; \gamma\right)$ is spanned by

$$
\left\{\delta_{2}, \theta_{1}, \theta_{3}, \ldots, \theta_{2 n+1}\right\},
$$

where $\delta_{2}=\left(y_{2}, 1\right), \theta_{2 i+1}=\left(y_{2 n+1}, y_{2}^{n-i}\right), i=0, \ldots, n$. The differential is given by $\delta \delta_{2}=(n+1) \theta_{1}$ and zero otherwise. Therefore

$$
\pi_{*}\left(\operatorname{aut}_{1} \mathbb{C} P^{n}\right) \otimes \mathbb{Q}=H_{*}(L, \delta)=\left\langle\left[\theta_{3}\right], \ldots,\left[\theta_{2 n+1}\right]\right\rangle
$$

Hence aut \mathbb{C}^{n} has the rational homotopy type of $S^{3} \times S^{5} \times \cdots \times S^{2 n+1}$. Let

$$
L^{\prime}=\left(\operatorname{Der}\left(A, H^{*}(B), \phi\right), \delta\right)=\left(\left\langle\beta_{2}, \alpha_{2 k+1}, \ldots, \alpha_{2 n+2 k+1}\right\rangle, \delta\right) .
$$

The mapping $\phi^{*}: L \rightarrow L^{\prime}$ is defined by $\phi^{*}\left(\delta_{2}\right), \phi^{*}\left(\theta_{2 i+1}\right)=0$ for $i<k$, and $\phi^{*}\left(\theta_{2 i+1}\right)=\alpha_{2 i+1}$ for $i \geq k$. If $k>n$, then $\phi^{*}\left(\delta_{2}\right)=\beta_{2}$ and zero otherwise. Moreover

$$
C^{\infty}\left(s^{-1} L\right)=\left(\wedge\left(x_{2}, y_{1}, \ldots, y_{2 i-1}, \ldots, y_{2 n+1}\right), d\right),
$$

where $d x_{2}=0$ and $d y_{2 i-1}=x_{2}^{i}$. In particular $d y_{1}=x_{2}$. In the same way

$$
C^{\infty}\left(s^{-1} L^{\prime}\right)=\left(\wedge\left(u_{2}, v_{2 k+1}, \ldots, v_{2 n+2 k+1}\right), d\right),
$$

where $d u_{2}=0, d v_{2 i+1}=u_{2}^{i+1}$. Hence

$$
\Phi=C^{\infty}\left(\phi^{*}\right): C^{\infty}\left(s^{-1} L^{\prime}\right) \rightarrow C^{\infty}\left(s^{-1} L\right)
$$

is defined by $\Phi\left(u_{2}\right)=x_{2}$ and vanishes on other generators. As $C^{\infty}\left(s^{-1} L^{\prime}\right)$ is quasi-isomorphic to

$$
\left(\wedge\left(w_{2}, w_{2 k+1}\right), d\right) \otimes\left(\wedge\left(w_{2 k+3}, \ldots, w_{2 n+2 k+1}\right), 0\right)
$$

where $d w_{2}=0, d w_{2 k+1}=w_{2}^{k+1}$ and, $C^{\infty}\left(s^{-1} L\right)$ is quasi-isomorphic to

$$
\left(\wedge\left(z_{3}, \ldots, z_{2 n+1}\right), 0\right)
$$

then induced map

$$
\tilde{\Phi}:\left(\wedge\left(w_{2}, w_{2 k+1}, w_{2 k+3}, \ldots, w_{2 n+2 k+1}\right), d\right) \rightarrow\left(\wedge\left(z_{3}, \ldots, z_{2 n+1}\right), 0\right)
$$

between minimal Sullivan models is zero.
Definition 14. Let X be a topological space. We say $\alpha \in \pi_{n}(X)$ is a Gottlieb element if the map: $f \vee 1_{X}: S^{n} \vee X \rightarrow X$ extends to $S^{n} \times X$, where f represents the homotopy class α [9].

Gottlieb elements form a subgroup of $\pi_{*}(X)$ which will be denoted by $G_{*}(X)$. It comes from the definition that $G_{*}(X)$ is the image of $\pi_{*}(\mathrm{ev})$: $\pi_{*}\left(\right.$ aut $\left._{1} X, 1_{X}\right) \rightarrow \pi_{*}\left(X, x_{0}\right)$, where ev is the evaluation map at x_{0}. If $f: X \rightarrow$ Y, then $G_{*}(Y, X ; f)$ is the image of $\pi_{*}(e v)$ where $e v: \operatorname{map}(X, Y ; f) \rightarrow Y$ is the evaluation map at the base point.

Let $(\wedge V, d)$ be the minimal Sullivan model of a simply connected space X. Define the Gottlieb group of $(\wedge V, d)$

$$
G_{n}(\wedge V, d)=\left\{[\theta] \in H_{n}(\operatorname{Der} \wedge V, \delta): \theta(v)=1, v \in V^{n}\right\}
$$

Hence $G_{*}(\wedge V, d) \cong \operatorname{im} H_{*}\left(\epsilon_{*}\right)$, where $\epsilon_{*}: \operatorname{Der} \wedge V \rightarrow \operatorname{Der}(\wedge V, \mathbb{Q} ; \epsilon)$ is the post composition with the augmentation map $\epsilon: \wedge V \rightarrow \mathbb{Q}$. Then $G_{n}(\wedge V) \cong$ $G_{n}\left(X_{\mathbb{Q}}\right)$, where $h: X \rightarrow X_{\mathbb{Q}}$ is the rationalization [6, Propostion 29.8]. There are also relative Gottlieb groups $G_{*}^{r e l}(Y, X ; f)$ and a G-sequence

$$
\cdots \rightarrow G_{n+1}^{r e l}(Y, X ; f) \rightarrow G_{n}(X) \rightarrow G_{n}(Y, X ; f) \rightarrow \cdots
$$

which was introduced by Lee and Woo. The sequence is exact in some cases, for instance if f has a left homotopy inverse [17]. We follow the description of rational evaluation homotopy groups as given by Lupton and Smith [12].

Using augmentation maps we obtain the commutative diagram.

In the same way we define $G_{*}\left(A, H^{*}(B) ; \phi\right)$ as the image of $H_{*}\left(\epsilon_{*}\right)$ in $H_{*}(\operatorname{Der}(A, \mathbb{Q}, \epsilon))$.

In order to define relative rational Gottlieb groups, we recall that if ϕ : $\left(C, d_{C}\right) \rightarrow\left(C^{\prime}, d_{C^{\prime}}\right)$ is a map of chain complexes, the mapping cone of ϕ, denoted by $\operatorname{Rel}(\phi)$, is the complex of which the underlying graded vector space is $s C \oplus C^{\prime}$ and the differential is given by $D(s x, y)=\left(-s d_{C}(x), \phi(x)+d_{C^{\prime}} y\right)$ [12] or [14, p. 46]. Define chain maps $J: C_{n}^{\prime} \rightarrow \operatorname{Rel}_{n}(\phi)$ and $P: \operatorname{Rel}_{n}(\phi) \rightarrow C_{n-1}$ by $J(y)=(0, y)$ and $P(s x, y)=x$. This yields an exact sequence of chain complexes

$$
0 \rightarrow C_{*}^{\prime} \xrightarrow{J} \operatorname{Rel}_{*}(\phi) \xrightarrow{P} C_{*-1} \rightarrow 0
$$

which induces a long exact sequence in homology [14, Proposition 4.3]. We consider the mapping cone $\operatorname{Rel}\left(\phi^{*}\right)$ of

$$
\phi^{*}:\left(\operatorname{Der}\left(B, H^{*}(B), \gamma\right), \delta\right) \rightarrow\left(\operatorname{Der}\left(A, H^{*}(B), \phi\right), \delta\right)
$$

$\operatorname{Rel}\left(\widehat{\phi}^{*}\right)$ the mapping cone of $\widehat{\phi}^{*}: \operatorname{Der}(B, \mathbb{Q} ; \epsilon) \rightarrow \operatorname{Der}(A, \mathbb{Q} ; \epsilon)$ and the induced $\operatorname{map}\left(\epsilon_{*}, \epsilon_{*}\right): \operatorname{Rel}\left(\phi^{*}\right) \rightarrow \operatorname{Rel}\left(\widehat{\phi}^{*}\right)$. The relative Gottlieb group $G_{*}^{r e l}(A, B ; \phi)$ is the image of $H_{*}\left(\epsilon_{*}, \epsilon_{*}\right)$. From the tower

one gets a sequence

$$
\cdots \rightarrow G_{k+1}\left(B, H^{*}(B), \gamma\right) \rightarrow G_{k}\left(A, H^{*}(B), \phi^{*}\right) \rightarrow G_{k}^{r e l}\left(A, H^{*}(B), \phi^{*}\right) \rightarrow \cdots
$$

called G-sequence of ϕ.
Proposition 15. The G-sequence associated to the inclusion aut ${ }_{1} \mathbb{C} P^{n} \rightarrow$ $\operatorname{map}\left(\mathbb{C} P^{n}, \mathbb{C} P^{n+k} ; i_{n, k}\right)$ is not exact.
Proof. Clearly $G_{*}\left(B, H^{*}(B) ; \gamma\right)=\left\langle\left[\left(y_{2 n+1}, 1\right)\right]\right\rangle$ and similarly

$$
G_{*}\left(A, H^{*}(B), \phi\right)=\left\langle\left[\left(x_{2}, 1\right)\right],\left[\left(x_{2 n+2 k+1}, 1\right)\right]\right\rangle .
$$

We consider first the case where $k>n$. Then the only non zero differential on $\operatorname{Rel}\left(\phi^{*}\right)=\left(s L \oplus L^{\prime}, d\right)$ is given by

$$
d\left(s \delta_{2}, 0\right)=\left(-s \theta_{1}, 0\right)+\left(0, \phi^{*}\left(\delta_{2}\right)\right)=\left(-s \theta_{1}, 0\right)+\left(0, \beta_{2}\right) .
$$

Similarly the only non zero differential on

$$
\operatorname{Rel}\left(\widehat{\phi}^{*}\right)=\left\langle\left(s y_{2}^{*}, 0\right),\left(s y_{2 n+1}^{*}, 0\right),\left(0, x_{2}^{*}\right),\left(0, x_{2 n+2 k+1}^{*}\right)\right\rangle
$$

is $d\left(s y_{2}^{*}, 0\right)=\left(0, x_{2}^{*}\right)$. We conclude that

$$
\begin{aligned}
G_{*}^{r e l}\left(A, H^{*}(B), \phi\right) & =\left\langle\left[\left(s y_{2 n+1}^{*}, 0\right)\right],\left(0, x_{2 n+2 k+1}^{*}\right)\right\rangle \\
& \cong s G_{*}\left(\mathbb{C} P^{n}\right) \oplus G_{*}\left(\mathbb{C} P^{n+k}\right) .
\end{aligned}
$$

Hence in the G-sequence reduces to fragments

$$
\begin{aligned}
0 \rightarrow G_{2 n+2}^{r e l}\left(A, H^{*}(B) ; \phi^{*}\right) & \xlongequal{\cong} G_{2 n+1}\left(B, H^{*}(B) ; \gamma\right) \rightarrow 0, \\
0 \rightarrow G_{2 n+2 k+1}\left(A, H^{*}(B) ; \phi^{*}\right) & \xlongequal{\cong} G_{2 n+2 k+1}^{r e l}\left(A, H^{*}(B) ; \phi^{*}\right) \rightarrow 0
\end{aligned}
$$

and terminates with

$$
0 \rightarrow G_{2}\left(A, H^{*}(B) ; \phi^{*}\right) \rightarrow 0
$$

As $G_{2}\left(A, H^{*}(B) ; \phi^{*}\right) \cong \mathbb{Q}$, we conclude that the last fragment of the G sequence is not exact.

If $k \leq n$, then $\phi^{*}\left(\theta_{2 n+1}\right)=\alpha_{2 n+1}$, hence $d\left(s \theta_{2 n+1}, 0\right)=\left(0, \alpha_{2 n+1}\right)$, therefore $\left[\left(s y_{2 n+1}^{*}, 0\right)\right] \in H_{*}\left(\operatorname{Rel}\left(\widehat{\phi}^{*}\right)\right)$ is not in the image of $H_{*}\left(\epsilon_{*}, \epsilon_{*}\right)$. The only change in the G-sequence is the fragment

$$
0 \rightarrow G_{2 n+2}^{r e l}\left(A, H^{*}(B) ; \phi^{*}\right) \rightarrow 0
$$

which in not exact as well, as $G_{2 n+2}^{r e l}\left(A, H^{*}(B)\right) \cong \mathbb{Q}$.

References

[1] J. Block and A. Lazarev, André-Quillen cohomology and rational homotopy of function spaces, Adv. Math. 193 (2005), no. 1, 18-39. https://doi.org/10.1016/j.aim. 2004. 04.014
[2] E. H. Brown, Jr., and R. H. Szczarba, On the rational homotopy type of function spaces, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4931-4951. https://doi.org/10.1090/ S0002-9947-97-01871-0
[3] U. Buijs, Y. Félix, and A. Murillo, Lie models for the components of sections of a nilpotent fibration, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5601-5614. https: //doi.org/10.1090/S0002-9947-09-04870-3
[4] U. Buijs, Y. Félix, and A. Murillo, L_{∞} models of based mapping spaces, J. Math. Soc. Japan 63 (2011), no. 2, 503-524. http://projecteuclid.org/euclid.jmsj/1303737796
[5] U. Buijs, Y. Félix, and A. Murillo, L_{∞} rational homotopy of mapping spaces, Rev. Mat. Complut. 26 (2013), no. 2, 573-588. https://doi.org/10.1007/s13163-012-0105-z
[6] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9
[7] J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc. Amer. Math. Soc. 132 (2004), no. 2, 597-606. https://doi.org/10.1090/S0002-9939-03-07203-4
[8] J.-B. Gatsinzi and R. Kwashira, Rational homotopy groups of function spaces, in Homotopy theory of function spaces and related topics, 105-114, Contemp. Math., 519, Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/conm/519/10235
[9] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. https://doi.org/10.2307/2373349
[10] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), no. 2, 609-620. https://doi.org/10.2307/1999931
[11] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147-2161. https://doi.org/10.1080/00927879508825335
[12] G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (2007), no. 1, 159-171. https://doi.org/10.1016/j.jpaa.2006.05.018
[13] G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map. II. Quillen models and adjoint maps, J. Pure Appl. Algebra 209 (2007), no. 1, 173-188. https: //doi.org/10.1016/j.jpaa.2006.05.019
[14] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York, 1963.
[15] J. M. Møller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985), no. 2, 721-732. https: //doi.org/10.2307/2000242
[16] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 269-331 (1978).
[17] M. H. Woo and K. Y. Lee, On the relative evaluation subgroups of a CW-pair, J. Korean Math. Soc. 25 (1988), no. 1, 149-160.

Jean-Baptiste Gatsinzi
Department of Mathematics and Statistical Sciences
Botswana International University of Science and Technology
Private Bag 16, Palapye, Botswana
Email address: gatsinzij@biust.ac.bw

[^0]: Received November 16, 2020; Accepted January 20, 2021.
 2010 Mathematics Subject Classification. Primary 55P62; Secondary 54C35.
 Key words and phrases. Rational homotopy theory, mapping space, L_{∞} algebra.

