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DOUBLE VERTEX-EDGE DOMINATION IN TREES

Xue-Gang Chen and Moo Young Sohn

Abstract. A vertex v of a graph G = (V,E) is said to ve-dominate

every edge incident to v, as well as every edge adjacent to these incident
edges. A set S ⊆ V is called a double vertex-edge dominating set if every

edge of E is ve-dominated by at least two vertices of S. The minimum

cardinality of a double vertex-edge dominating set of G is the double
vertex-edge domination number γdve(G). In this paper, we provide an

upper bound on the double vertex-edge domination number of trees in

terms of the order n, the number of leaves and support vertices, and we
characterize the trees attaining the upper bound. Finally, we design a

polynomial time algorithm for computing the value of γdve(T ) for any
trees. This gives an answer of an open problem posed in [4].

1. Introduction

Let G be a simple and undirected graph. The vertex set and the edge set
of G are denoted by V (G) and E(G), respectively. Let n(G) = |V (G)|. By
an open neighborhood of a vertex v of G we mean the set NG(v) = {u ∈
V (G) : uv ∈ E(G)} and the closed neighborhood, NG[v] = NG(v) ∪ {v}. The
degree of a vertex v, denoted by dG(v), is the cardinality of its neighborhood.
If the graph G is clear from context, we simply write N(v), N [v] and d(v),
respectively. The minimum degree and maximum degree of the graph G are
denoted by δ(G) and ∆(G), respectively.

For any e = vu ∈ E(G), we define V (e) = {v, u}. Let N(e) = {f ∈ E(G) : f
is adjacent to e}, N [e] = N(e)∪{e}, N2(e) = {f ∈ E(G) : V (e)∩V (f) = ∅} and
one vertex in V (f) is adjacent to one vertex in V (e) and N≤2(e) = N [e]∪N2(e).

Let S ⊆ V (G), NG(S) =
⋃

v∈S NG(v) and NG[S] = NG(S) ∪ S. The graph
induced by S ⊆ V is denoted by G[S]. The diameter of G, denoted by diam(G),
is the maximum distance among pairs of vertices in G.

A vertex of degree one is called a leaf and its neighbor is called a support
vertex. An edge incident with a leaf is called a pendant edge. A support vertex
is said to be strong (weak, respectively) if it is adjacent to at least two leaves
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(exactly one leaf, respectively). A star of order n ≥ 2, denoted by K1,n−1, is a
tree with n− 1 leaves. A tree with diam(T ) = 3 is called a double star.

A vertex v ve-dominates every edge uv incident to v, as well as every edge
adjacent to these incident edges. That is, a vertex v ve-dominates every edge
incident to a vertex in N [v].

A set S ⊆ V in a graph G is called a vertex-edge dominating set if every edge
in e ∈ E, there exists a vertex v ∈ S such that v ve-dominates e. The vertex-
edge domination number γve(G) is defined to be the minimum cardinality of a
vertex-edge dominating set in G. The concept of vertex-edge domination was
introduced by Peters [7] in 1986 and studied further in [1, 5, 6].

A set S ⊆ V in a graph G is said to be a double vertex-edge dominating set
(or simply, a double ve-dominating set) if every edge in E is ve-dominated by
at least two vertices of S.

The double vertex-edge domination number γdve(G) is defined to be the min-
imum cardinality of a double ve-dominating set in G. The concept of double
vertex-edge domination was introduced by Balakrishna et al. [4].

Balakrishna et al. showed that the problem of computing the double vertex-
edge domination number is in the NP-complete class even when restricted to
bipartite graphs. They provided a lower bound on the double vertex-edge
domination number of trees in terms of the order n, the number of leaves and
support vertices.

Proposition 1 ([4]). If T is a nontrivial tree of order n with l leaves and s
support vertices, then γdve(T ) ≥ n−l−s+4

2 .

Furthermore, they gave the following open problem.

Problem 1 ([4]). Design an algorithm for computing the value of γdve(T) for
any tree T .

In this paper, we provide an upper bound on the double vertex-edge domina-
tion number of trees in terms of the order n, the number of leaves and support
vertices, and we characterize the trees attaining the upper bound. Finally, we
design a polynomial time algorithm for computing the value of γdve(T ) for any
trees. This gives an answer of Problem 1.

2. Upper bound

Let k ≥ 2 be an integer and Hk be the graph obtained from the star K1,k by
subdividing every edge twice. The center of the star K1,k is called the center
of Hk. Let H ′k be the tree obtained from Hk by attaching a new vertex x and
joining x to the center of Hk.

For any tree T , let L(T ) and S(T ) denote the set of leaves and support
vertices, respectively. The following lemmas are easy to prove. We omit their
proves.
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Lemma 1. Let T be a tree with order at least three and u ∈ S(T ). If T1 is
the tree obtained from T by adding a new vertex v and joining v to u, then
γdve(T1) = γdve(T ).

Lemma 2. Let T be a tree and u ∈ V (T ) such that ux1x2 is a path in T in
which dT (u) ≥ 2, dT (x1) = 2 and dT (x2) = 1. If T1 is the tree obtained from
T by adding a new vertex v and joining v to u, then γdve(T1) = γdve(T ).

Lemma 3. Let T be a tree and u ∈ V (T ) such that ux1x2 is a path in T in
which dT (u) ≥ 2, dT (x1) = 2 and dT (x2) = 1. If T1 is the tree obtained from T
by attaching a path P2 = y1y2 and joining y1 to u, then γdve(T1) = γdve(T )+1.

Lemma 4. Let T be a tree and u ∈ V (T ) such that ux1x2 is a path in T in
which dT (u) ≥ 2, dT (x1) = 2 and dT (x2) = 1. If T1 is the tree obtained from T
by adding a path P3 = y1y2y3 and joining y1 to u, then γdve(T1) = γdve(T ) + 2.

Lemma 5. Let T be a tree and u ∈ V (T ) such that ux1 ∈ E(T ), dT (u) ≥ 2,
dT (x1) = 1 and u is a weak support vertex. If T1 is the tree obtained from T by
adding a Hk and joining x1 to the center of Hk, then γdve(T1) = γdve(T ) + 2k.

Lemma 6. Let T be a tree and u ∈ V (T ) such that ux1 ∈ E(T ), dT (u) ≥ 2,
dT (x1) = 1 and u is a weak support vertex. If T1 is the tree obtained from T by
adding a path P4 = y1y2y3y4 and joining y1 to x1, then γdve(T1) = γdve(T )+2.

In what follows, we provide an upper bound of the double vertex-edge domi-
nation number for trees in terms of the order n, number of leaves l and support
vertices s. In order to characterize the trees attaining this bound, we introduce
a family Γ of trees T = Tk that can be obtained as follows. Let T1 ∈ {P6}. If
i ≥ 2, then Ti+1 can be obtained recursively from Ti by one of the following
operations:
• Operation τ1: Attach a vertex and join it to any support vertex of Ti.
• Operation τ2: Suppose that ux1x2 is a path in Ti in which dTi

(u) ≥ 2,
dTi (x1) = 2 and dTi(x2) = 1. Attach a path P3 and join one of its leaves to u.
• Operation τ3: Suppose that ux1 ∈ E(Ti) in Ti in which dTi(u) ≥ 2,

dTi
(x1) = 1 and u is a weak support vertex. Attach a Hk and join x1 to the

center of Hk.
• Operation τ4: Suppose that ux1 ∈ E(Ti) in Ti in which dTi

(u) ≥ 2,
dTi (x1) = 1 and u is a weak support vertex. Attach a P4 and join x1 to one
leaf of P4.

Theorem 1. If T ∈ Γ, then γdve(T ) = n−l
2 + s.

Proof. We use an induction on the number k of operations performed to con-
struct the tree T . If T = P6, then γdve(T ) = 4 = n−l

2 +s. Suppose the property
is true for all trees of Γ constructed with k − 1 ≥ 0 operations. Let T = Tk
with k ≥ 2, T ′ = Tk−1, and assume that T ′ has order n′ with l′ leaves and s′

support vertices. We will discuss it from the following cases.
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Case 1. T is obtained from T ′ by Operation τ1. Clearly, n = n′ + 1, s = s′

and l = l′ + 1. By Lemma 1, γdve(T ) = γdve(T
′). By induction on T ′, we

obtain that γdve(T ) = γdve(T
′) = n′−l′

2 + s′ = n−l
2 + s.

Case 2. T is obtained from T ′ by Operation τ2. Clearly, n = n′ + 3,
s = s′ + 1 and l = l′ + 1. By Lemma 4, γdve(T ) = γdve(T

′) + 2. By induction

on T ′, we obtain that γdve(T ) = γdve(T
′) + 2 = n′−l′

2 + s′ + 2 = n−l
2 + s.

Case 3. T is obtained from T ′ by Operation τ3. Clearly, n = n′ + 3k + 1,
s = s′ + k − 1 and l = l′ + k − 1. By Lemma 5, γdve(T ) = γdve(T

′) + 2k. By

induction on T ′, we obtain that γdve(T ) = γdve(T
′) + 2k = n′−l′

2 + s′ + 2k =
n−l
2 + s.
Case 4. T is obtained from T ′ by Operation τ4. Clearly, n = n′ + 4, s = s′

and l = l′. By Lemma 6, γdve(T ) = γdve(T
′) + 2. By induction on T ′, we

obtain that γdve(T ) = γdve(T
′) + 2 = n′−l′

2 + s′ + 2 = n−l
2 + s. �

We now are ready to establish our upper bound.

Theorem 2. Let T be a tree of order n ≥ 4 with l leaves and s support vertices.
If T is not a star, then γdve(T ) ≤ n−l

2 + s with equality if and only if T ∈ Γ.

Proof. If T ∈ Γ, then by Theorem 1, γdve(T ) = n−l
2 + s. To prove that if T is a

tree of order n ≥ 4 with l leaves and s support vertices and T is not a star, then
γdve(T ) ≤ n−l

2 + s with equality only if T ∈ Γ, we proceed by induction on the
order n. Since n ≥ 4 and T is not a star, diam(T ) ≥ 3. If diam(T ) = 3, then
T is a double star and γdve(T ) = 2 < n−l

2 + s. So assume that diam(T ) ≥ 4.
Assume that every tree T ′ of order 4 ≤ n′ < n and with l′ leaves and s′

support vertices satisfies γdve(T
′) ≤ n′−l′

2 + s′ with equality only if T ′ ∈ Γ. Let
T be a tree of order n and with l leaves and s support vertices and T is not a
star.

If some support vertex of T , say u, is strong, then let T ′ be the tree obtained
from T by removing a leaf adjacent to u. By Lemma 1, γdve(T ) = γdve(T

′).
Clearly, n′ = n− 1, l′ = l− 1 and s′ = s. Applying the induction hypothesis to

T ′, γdve(T ) = γdve(T
′) ≤ n′−l′

2 + s′ = n−l
2 + s. Further, if γdve(T ) = n−l

2 + s,

then γdve(T
′) = n′−l′

2 + s′ and T ′ ∈ Γ. Therefore, T is obtained from T ′ by
using Operation τ1 and T ∈ Γ. Henceforth, we can assume that every support
vertex of T is weak.

Choose a vertex r as a root of T such that r is a leaf of path of maximum
length in T . Let t be a leaf at maximum distance from r and v, u, w, z be
the parents of t, v, u, w, respectively, in the rooted tree. By Tx, we denote the
sub-tree induced by a vertex x and its descendants in the rooted tree T . Since
T has no strong support vertex, dT (v) = 2.

Suppose that dT (u) ≥ 3. If u is a support vertex, then let T ′ be the tree
obtained from T by removing the leaf neighbor of u. By Lemma 2, γdve(T ) =
γdve(T

′). Clearly, n′ = n − 1, l′ = l − 1 and s′ = s − 1. By induction on T ′,

γdve(T ) = γdve(T
′) ≤ n′−l′

2 + s′ < n−l
2 + s. Now, if dT (u) ≥ 3, then every child
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of u is a support vertex. Let T ′ = T−Tv. By Lemma 3, γdve(T ) = γdve(T
′)+1.

Clearly, n′ = n − 2, l′ = l − 1 and s′ = s − 1. By induction on T ′, γdve(T ) =

γdve(T
′) + 1 ≤ n′−l′

2 + s′ + 1 < n−l
2 + s. Therefore, in what follows, we may

assume that dT (u) = 2.
If diam(T ) = 4, then T = P5 and γdve(T ) = 3 < n−l

2 + s. If diam(T ) = 5,
then by exchanging the root of T to t, we have T = P6 and γdve(T ) = 4 =
n−l
2 + s. So, P6 ∈ Γ. From now on, we may assume that T has diameter at

least six.
If w has a child which is a support vertex, then dT (w) ≥ 3. Let T ′ = T −Tu.

By Lemma 4, γdve(T ) = γdve(T
′) + 2. Clearly, n′ = n − 3, l′ = l − 1 and

s′ = s− 1. Applying the induction hypothesis to T ′, γdve(T ) = γdve(T
′) + 2 ≤

n′−l′
2 +s′+2 = n−l

2 +s. Further, if γdve(T ) = n−l
2 +s, then γdve(T

′) = n′−l′
2 +s′

and T ′ ∈ Γ. Therefore, T is obtained from T ′ by using Operation τ2 and T ∈ Γ.
Hence, we assume that w has no child which is a support vertex.

Let y be the parent of vertex z. In the following, we will discuss it from the
following cases.

Case 1. w ∈ S(T ).
Case 1.1. dT (w) = d ≥ 4. Then d − 2 ≥ 2 and Tw = H ′d−2. If dT (z) ≥ 3,

then let T ′ = T − Tw. Then γdve(T ) ≤ γdve(T
′) + γdve(H

′
d−2) = γdve(T

′) +
2(d − 2). Clearly, n′ = n − 3(d − 2) − 2, l′ = l − (d − 1) and s′ = s − (d − 1).
Applying the induction hypothesis to T ′, γdve(T ) ≤ γdve(T

′) + 2(d − 2) ≤
n′−l′

2 + s′ + 2(d− 2) < n−l
2 + s.

Suppose that dT (z) = 2. If diam(T ) = 6, then T = H ′d−1. So γdve(T ) =

2(d − 1) < n−l
2 + s. If diam(T ) ≥ 7, then let T ′ = T − Tw. Then γdve(T ) ≤

γdve(T
′)+2(d−2). Clearly, n′ = n−3(d−2)−2, l′ = l−(d−2) and s′ ≤ s−(d−2).

Applying the induction hypothesis to T ′, γdve(T ) ≤ γdve(T
′) + 2(d − 2) ≤

n′−l′
2 + s′ + 2(d− 2) < n−l

2 + s.
Case 1.2. dT (w) = 3. Then Tw = P5. If dT (z) ≥ 3, then let T ′ = T − Tw.

Then γdve(T ) ≤ γdve(T
′) + 3. Clearly, n′ = n − 5, l′ = l − 2 and s′ = s − 2.

Applying the induction hypothesis to T ′, γdve(T ) ≤ γdve(T ′) + 3 ≤ n′−l′
2 + s′+

3 < n−l
2 + s.

If dT (z) = 2, then let T ′ = T − (Tw \ {w}). Then γdve(T ) ≤ γdve(T
′) + 2.

Clearly, n′ = n−4, l′ = l−1 and s′ = s−1. Applying the induction hypothesis

to T ′, γdve(T ) ≤ γdve(T ′) + 2 ≤ n′−l′
2 + s′ + 2 < n−l

2 + s.
Case 2. w /∈ S(T ).
Case 2.1. dT (w) = d ≥ 3. Then d− 1 ≥ 2 and Tw = Hd−1.
If dT (z) ≥ 3, then let T ′ = T − Tw. Then γdve(T ) ≤ γdve(T

′) + 2(d − 1).
Clearly, n′ = n−3(d−1)−1, l′ = l− (d−1) and s′ = s− (d−1). Applying the

induction hypothesis to T ′, γdve(T ) ≤ γdve(T ′)+2(d−1) ≤ n′−l′
2 +s′+2(d−1) <

n−l
2 + s.

Suppose that dT (z) = 2. If diam(T ) = 6, then T = Hd. So γdve(T ) =
2(d− 1) < n−l

2 + s. Hence, we can assume that diam(T ) ≥ 7.
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If y ∈ S(T ), then let T ′ = T − Tw. Then γdve(T ) ≤ γdve(T
′) + 2(d − 1).

Clearly, n′ = n−3(d−1)−1, l′ = l− (d−2) and s′ = s− (d−1). Applying the

induction hypothesis to T ′, γdve(T ) ≤ γdve(T ′)+2(d−1) ≤ n′−l′
2 +s′+2(d−1) <

n−l
2 + s.

If y /∈ S(T ), then let T ′ = T − Tw. Then γdve(T ) ≤ γdve(T
′) + 2(d − 1).

Clearly, n′ = n−3(d−1)−1, l′ = l− (d−2) and s′ = s− (d−2). Applying the

induction hypothesis to T ′, γdve(T ) ≤ γdve(T ′)+2(d−1) ≤ n′−l′
2 +s′+2(d−1) ≤

n−l
2 + s. Further, if γdve(T ) = n−l

2 + s, then γdve(T
′) = n′−l′

2 + s′ and T ′ ∈ Γ.
Therefore, T is obtained from T ′ by using Operation τ3 and T ∈ Γ.

Case 2.2. dT (w) = 2. If diam(T ) = 6, 7, then by exchanging the root of T
to t, we have T = P7 and T = P8, respectively. It is obvious that the result
holds. So we can assume that diam(T ) ≥ 8. If dT (z) ≥ 3, then let T ′ = T−Tw.
Clearly, n′ = n− 4, l′ = l − 1 and s′ = s− 1.

Suppose that there exists a leaf y4 ∈ L(T ′) \ {r} such that dT ′(z, y4) = 4.
Assume that zy1y2y3y4 is the path in T ′. Since dT (r, y4) = diam(T ), we
can assume that dT ′(y2) = dT ′(y3) = 2. Then there exists a γdve-set D′ of
T ′ such that y2, y3 ∈ D′. Since edge zy1 is ve-dominated by at least two
vertex, NT ′ [z] ∩D′ 6= ∅. Say b ∈ NT ′ [z] ∩D′. Then edge zw is ve-dominated
by b. So D′ ∪ {u, v} is a double vertex-edge dominating set of T . Hence,
γdve(T ) ≤ γdve(T

′) + 2. Applying the induction hypothesis to T ′, γdve(T ) ≤
γdve(T

′) + 2 ≤ n′−l′
2 + s′ + 2 < n−l

2 + s. Hence we can assume that every leaf
in L(T ′) \ {r} has distance at most 3 from z.

Suppose that there exists a leaf y3 ∈ L(T ′) such that dT ′(z, y3) = 3. Say
zy1y2y3 being the path in T ′. Since dT ′(y2) = 2, there exists a γdve-set D′ of
T ′ such that y1, y2 ∈ D′. Then edge zw is ve-dominated by y1. So D′ ∪ {u, v}
is a double vertex-edge dominating set of T . Hence, γdve(T ) ≤ γdve(T

′) + 2.

Applying the induction hypothesis to T ′, γdve(T ) ≤ γdve(T ′) + 2 ≤ n′−l′
2 + s′+

2 < n−l
2 + s.

Hence we can assume that every leaf in L(T ′) \ {r} has distance at most
2 from z. So z is a support vertex or is adjacent to a support vertex in T ′.
Then there exists a γdve-set D′ of T ′ such that z ∈ D′. Then edge zw is
ve-dominated by z. So D′ ∪ {u, v} is a double vertex-edge dominating set of
T . Hence, γdve(T ) ≤ γdve(T

′) + 2. Applying the induction hypothesis to T ′,

γdve(T ) ≤ γdve(T ′) + 2 ≤ n′−l′
2 + s′ + 2 < n−l

2 + s.
Suppose that dT (z) = 2 and dT (y) = 2. Let T ′ = T − Tw. Then γdve(T ) ≤

γdve(T
′) + 2. Clearly, n′ = n − 4, l′ = l and s′ = s. Applying the induction

hypothesis to T ′, γdve(T ) ≤ γdve(T
′) + 2 ≤ n′−l′

2 + s′ + 2 ≤ n−l
2 + s. Further,

if γdve(T ) = n−l
2 + s, then γdve(T

′) = n′−l′
2 + s′ and T ′ ∈ Γ. Therefore, T is

obtained from T ′ by using Operation τ4 and T ∈ Γ.
Suppose that dT (z) = 2 and dT (y) ≥ 3. Let T ′ = T − Tw. It is obvious that

γdve(T ) ≤ γdve(T ′)+2. If y is a support vertex in T , then n′ = n−4, l′ = l and
s′ = s− 1. Applying the induction hypothesis to T ′, γdve(T ) ≤ γdve(T ′) + 2 ≤
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n′−l′
2 + s′ + 2 < n−l

2 + s. If y is not a support vertex in T , then n′ = n − 4,
l′ = l and s′ = s. By Lemma 6, γdve(T ) = γdve(T

′)+2. Applying the induction

hypothesis to T ′, γdve(T ) = γdve(T
′) + 2 ≤ n′−l′

2 + s′ + 2 ≤ n−l
2 + s. Further,

if γdve(T ) = n−l
2 + s, then γdve(T

′) = n′−l′
2 + s′ and T ′ ∈ Γ. Therefore, T is

obtained from T ′ by using Operation τ4 and T ∈ Γ. �

3. Algorithms

Now, we work on an algorithm for finding a minimum double ve-dominating
set of a tree. For technical reasons, we actually consider a slightly more general
problem, which can be formulated as follows. Let the edge set of a tree T =
(V,E) be partitioned into three subsets, E = W∪B∪Y , each consisting of edges
labeled W,B, Y , respectively. Let the vertex set of the tree T be partitioned
into two subsets, V = F ∪ R, each consisting of vertices labeled F and R,
respectively.

For simplicity, the terms F,R,W,B, Y represent sets and labels interchange-
ably. A one-two ve-dominating set of T is a set D which satisfies the following
three conditions:

(1) R ⊆ D;
(2) For any edge e ∈ Y , e is ve-dominated by at least one vertex in D \R.
(3) For any edge e ∈W , e is ve-dominated by at least two vertices in D \R.
The one-two ve-domination number γ12(T ) is the minimum cardinality

among all one-two ve-dominating sets of T . A one-two ve-dominating set of T
with cardinality γ12(T ) is also called a γ12-set.

Note that the double vertex-edge domination problem is just the one-two
ve-domination problem with F = V (T ), W = E(T ) and R = Y = B = ∅.
This generalization can be viewed as a labeling algorithm, which appears in
[2] for the first time, and is afterwards widely used in the literature for solving
the domination-related problem in [3] and [8]. However, unlike the ordinary
practice to partition the vertex set, we partition both the vertex set and the
edge set, as can be seen in above definitions. To obtain a polynomial time
algorithm for finding a minimum one-two ve-dominating set of a tree, we should
design an edge data structure as follows.

First root the tree T at any leaf, say, r. The height of T is the maximum
distance between r and all other vertices. Let h be the height of T . The i-th
level Ai (0 ≤ i ≤ h) be the set of vertices of T which are at distance i from
the root. For such a rooted tree T with order n we can number the edges of
T with 1, 2, . . . , n− 1 as follows. We go on every level starting with level h to
level 1. For each i (1 ≤ i ≤ h), we traverse the edges connecting the vertices
on level i and i − 1 in arbitrary order, say from left to right. Finally, we list
out the fathers of all edges of T (we mean that the edge numbered n−1 has no
father by writing father(n − 1) = 0), and thus we can represent T by a data
structure called an edge father array. Fig. 1 shows an example of a tree and its
edge father array. The edge numbered n− 1 is called the edge root of T .
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1 2 3 4 5

6 7 8

9

edge

father

1 2 3 4 5 6 7 8 9

6 6 7 8 8 9 9 9 0

Figure 1. A rooted tree with its edge father array.

In order to obtain the γdve(T ), we will design an algorithm for the γ12(T )
with F = V (T ), W = E(T ) and R = Y = B = ∅.
Algorithm 1 Computes the one-two ve-domination number of a tree T

Input: an edge rooted tree T represented by its edge father array [1, 2, . . .,
n− 1]. An edge assignment L1 and a vertex assignment L2 such that every
edge is labeled W and every vertex is labeled by F , respectively.
Output: a minimum one-two ve-dominating set of T .

T ′ ← T ; D ← ∅; R← ∅; Y ← ∅; B ← ∅;
for e = 1 to n− 2 do

let e = vu, where v is a leaf of T ′, u is the parent vertex of v;
father(e)← the father edge of e;
p(e)← the parent vertex u of v;
if v ∈ F , u ∈ F and e ∈W then

L2(u)← R; L2(p(father(e)))← R;
L1(e′)← B for every edge e′ ∈ N [father(e)];
L1(e′)← Y for every edge e′ ∈ N2(father(e)) ∩W ;
L1(e′)← B for every edge e′ ∈ N2(father(e)) ∩ Y ;
T ′ ← T ′ − {v};

if v ∈ F , u ∈ F and e ∈ Y then
if p(father(e)) ∈ R then

L2(u)← R;
L1(e′)← B for every edge e′ ∈ N [father(e)];
T ′ ← T ′ − {v};

else
L2(p(father(e)))← R;
L1(e′)← Y for every edge e′ ∈ N≤2(father(e)) ∩W ;
L1(e′)← B for every edge e′ ∈ N≤2(father(e)) ∩ Y ;
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T ′ ← T ′ − {v};
if v ∈ F , u ∈ R and e ∈ Y then

L2(p(father(e)))← R;
L1(e′)← Y for every edge e′ ∈ N≤2(father(e)) ∩W ;
L1(e′)← B for every edge e′ ∈ N≤2(father(e)) ∩ Y ;
T ′ ← T ′ − {v};

if v ∈ R, u ∈ F and e ∈ Y then
L2(p(father(e)))← R;
L1(e′)← Y for every edge e′ ∈ N≤2(father(e)) ∩W ;
L1(e′)← B for every edge e′ ∈ N≤2(father(e)) ∩ Y ;
D ← D ∪ {v};
T ′ ← T ′ − {v};

if e ∈ B then
if v ∈ F then

T ′ ← T ′ − {v};
else

D ← D ∪ {v}; T ′ ← T ′ − {v};
end for
if e ∈W then

D ← D ∪ {v, u};
if e ∈ Y then

D ← D ∪ ({v, u} ∩R) ∪ {w}, where w ∈ ({v, u} ∩ F );

if e ∈ B then
D ← D ∪ ({v, u} ∩R).

return D

Theorem 3. Algorithm 1 produces a minimum one-two ve-dominating set of
a tree T in polynomial time.

Proof. It is easy to see that the running time of algorithm 1 is polynomial
time. For the correctness of the algorithm, it is sufficient to consider T with
at least two edges, since the algorithm obviously produces a minimum one-two
ve-dominating set of a tree with one edge correctly. Assume that e = vu is a
pending edge of T and v is a leaf in the lowest level of the edge rooted tree.
Then the proof of Theorem 3 is followed by five simple claims.

Claim 1. If v ∈ F , u ∈ F and e ∈ W , then there exists a minimum one-two
ve-dominating set of T containing both u and p(father(e)).

Proof. Let D be a minimum one-two ve-dominating set of T . Since e ∈ W ,
then there exist at least two vertices in N [u] to ve-dominate e. Let D′ =
(D\(D∩N [u]))∪{u, p(father(e))}. It is easy to see thatD′ is another minimum
one-two ve-dominating set of T containing both u and p(father(e)). �
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Claim 2. Suppose that v ∈ F , u ∈ F and e ∈ Y . If p(father(e)) /∈
R, then there exists a minimum one-two ve-dominating set of T containing
p(father(e)). If p(father(e)) ∈ R, then there exists a minimum one-two ve-
dominating set of T containing u.

Proof. Let D be a minimum one-two ve-dominating set of T . Suppose that
e ∈ Y and p(father(e)) /∈ R. Then there exists at least one vertex inN [u] to ve-
dominate e. Let D′ = (D\(D∩N [u]))∪{p(father(e))}. It is easy to see that D′

is another minimum one-two ve-dominating set of T containing p(father(e)).
Suppose that e ∈ Y and p(father(e)) ∈ R. Then there exists at least one
vertex w ∈ N [u] \ {p(father(e))} to ve-dominate e. Let D′ = (D \ {w})∪ {u}.
It is easy to see that D′ is another minimum one-two ve-dominating set of T
containing both u and p(father(e)). �

Claim 3. If v ∈ F , u ∈ R and e ∈ Y , then there exists a minimum one-two
ve-dominating set of T containing p(father(e)).

Proof. Let D be a minimum one-two ve-dominating set of T . Since v ∈ F ,
u ∈ R and e ∈ Y , then there exists at least one vertex w ∈ N(u) to ve-
dominate e. Let D′ = (D \ {w}) ∪ {p(father(e))}. It is easy to see that D′ is
another minimum one-two ve-dominating set of T containing p(father(e)). �

Claim 4. If v ∈ R, u ∈ F and e ∈ Y , then there exists a minimum one-two
ve-dominating set of T containing p(father(e)).

Proof. Let D be a minimum one-two ve-dominating set of T . Since v ∈ R,
u ∈ F and e ∈ Y , then there exists at least one vertex w ∈ N [u] \ {v} to ve-
dominate e. Let D′ = (D \ {w}) ∪ {p(father(e))}. It is easy to see that D′ is
another minimum one-two ve-dominating set of T containing p(father(e)). �

Claim 5. Suppose that e ∈ B. If v ∈ F , then there exists a minimum one-two
ve-dominating set of T not containing v. If v ∈ R, then there exists a minimum
one-two ve-dominating set of T containing v.

Proof. Let D be a minimum one-two ve-dominating set of T . Suppose that e ∈
B and v ∈ F . If v ∈ D, then let w ∈ N [u]\{v} and D′ = (D\{v})∪{w}. Then
D′ is a minimum one-two ve-dominating set of T not containing v. Suppose
that e ∈ B and v ∈ R. By the definition of one-two ve-dominating set, there
exists a minimum one-two ve-dominating set of T containing v. �
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