Bull. Korean Math. Soc. **59** (2022), No. 1, pp. 167–177 https://doi.org/10.4134/BKMS.b210171 pISSN: 1015-8634 / eISSN: 2234-3016

DOUBLE VERTEX-EDGE DOMINATION IN TREES

Xue-Gang Chen and Moo Young Sohn

ABSTRACT. A vertex v of a graph G = (V, E) is said to *ve*-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set $S \subseteq V$ is called a double vertex-edge dominating set if every edge of E is *ve*-dominated by at least two vertices of S. The minimum cardinality of a double vertex-edge dominating set of G is the double vertex-edge domination number $\gamma_{dve}(G)$. In this paper, we provide an upper bound on the double vertex-edge domination number of trees in terms of the order n, the number of leaves and support vertices, and we characterize the trees attaining the upper bound. Finally, we design a polynomial time algorithm for computing the value of $\gamma_{dve}(T)$ for any trees. This gives an answer of an open problem posed in [4].

1. Introduction

Let G be a simple and undirected graph. The vertex set and the edge set of G are denoted by V(G) and E(G), respectively. Let n(G) = |V(G)|. By an open neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood, $N_G[v] = N_G(v) \cup \{v\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. If the graph G is clear from context, we simply write N(v), N[v] and d(v), respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively.

For any $e = vu \in E(G)$, we define $V(e) = \{v, u\}$. Let $N(e) = \{f \in E(G) : f$ is adjacent to $e\}$, $N[e] = N(e) \cup \{e\}$, $N_2(e) = \{f \in E(G) : V(e) \cap V(f) = \emptyset\}$ and one vertex in V(f) is adjacent to one vertex in V(e) and $N_{\leq 2}(e) = N[e] \cup N_2(e)$.

Let $S \subseteq V(G)$, $N_G(S) = \bigcup_{v \in S} N_G(v)$ and $N_G[S] = N_G(S) \cup S$. The graph induced by $S \subseteq V$ is denoted by G[S]. The diameter of G, denoted by diam(G), is the maximum distance among pairs of vertices in G.

A vertex of degree one is called a *leaf* and its neighbor is called a *support* vertex. An edge incident with a leaf is called a pendant edge. A support vertex is said to be strong (weak, respectively) if it is adjacent to at least two leaves

©2022 Korean Mathematical Society

167

Received March 3, 2021; Revised August 31, 2021; Accepted October 14, 2021.

²⁰¹⁰ Mathematics Subject Classification. 05C69, 05C35.

Key words and phrases. Double vertex-edge dominating set, trees.

(exactly one leaf, respectively). A star of order $n \ge 2$, denoted by $K_{1,n-1}$, is a tree with n-1 leaves. A tree with diam(T) = 3 is called a double star.

A vertex v ve-dominates every edge uv incident to v, as well as every edge adjacent to these incident edges. That is, a vertex v ve-dominates every edge incident to a vertex in N[v].

A set $S \subseteq V$ in a graph G is called a *vertex-edge dominating set* if every edge in $e \in E$, there exists a vertex $v \in S$ such that v ve-dominates e. The vertexedge domination number $\gamma_{ve}(G)$ is defined to be the minimum cardinality of a vertex-edge dominating set in G. The concept of vertex-edge domination was introduced by Peters [7] in 1986 and studied further in [1,5,6].

A set $S \subseteq V$ in a graph G is said to be a *double vertex-edge dominating set* (or simply, a double *ve*-dominating set) if every edge in E is *ve*-dominated by at least two vertices of S.

The double vertex-edge domination number $\gamma_{dve}(G)$ is defined to be the minimum cardinality of a double ve-dominating set in G. The concept of double vertex-edge domination was introduced by Balakrishna et al. [4].

Balakrishna et al. showed that the problem of computing the double vertexedge domination number is in the NP-complete class even when restricted to bipartite graphs. They provided a lower bound on the double vertex-edge domination number of trees in terms of the order n, the number of leaves and support vertices.

Proposition 1 ([4]). If T is a nontrivial tree of order n with l leaves and s support vertices, then $\gamma_{dve}(T) \geq \frac{n-l-s+4}{2}$.

Furthermore, they gave the following open problem.

Problem 1 ([4]). Design an algorithm for computing the value of $\gamma_{dve}(T)$ for any tree T.

In this paper, we provide an upper bound on the double vertex-edge domination number of trees in terms of the order n, the number of leaves and support vertices, and we characterize the trees attaining the upper bound. Finally, we design a polynomial time algorithm for computing the value of $\gamma_{dve}(T)$ for any trees. This gives an answer of Problem 1.

2. Upper bound

Let $k \geq 2$ be an integer and H_k be the graph obtained from the star $K_{1,k}$ by subdividing every edge twice. The center of the star $K_{1,k}$ is called the center of H_k . Let H'_k be the tree obtained from H_k by attaching a new vertex x and joining x to the center of H_k .

For any tree T, let L(T) and S(T) denote the set of leaves and support vertices, respectively. The following lemmas are easy to prove. We omit their proves.

Lemma 1. Let T be a tree with order at least three and $u \in S(T)$. If T_1 is the tree obtained from T by adding a new vertex v and joining v to u, then $\gamma_{dve}(T_1) = \gamma_{dve}(T)$.

Lemma 2. Let T be a tree and $u \in V(T)$ such that ux_1x_2 is a path in T in which $d_T(u) \ge 2$, $d_T(x_1) = 2$ and $d_T(x_2) = 1$. If T_1 is the tree obtained from T by adding a new vertex v and joining v to u, then $\gamma_{dve}(T_1) = \gamma_{dve}(T)$.

Lemma 3. Let T be a tree and $u \in V(T)$ such that ux_1x_2 is a path in T in which $d_T(u) \ge 2$, $d_T(x_1) = 2$ and $d_T(x_2) = 1$. If T_1 is the tree obtained from T by attaching a path $P_2 = y_1y_2$ and joining y_1 to u, then $\gamma_{dve}(T_1) = \gamma_{dve}(T) + 1$.

Lemma 4. Let T be a tree and $u \in V(T)$ such that ux_1x_2 is a path in T in which $d_T(u) \ge 2$, $d_T(x_1) = 2$ and $d_T(x_2) = 1$. If T_1 is the tree obtained from T by adding a path $P_3 = y_1y_2y_3$ and joining y_1 to u, then $\gamma_{dve}(T_1) = \gamma_{dve}(T) + 2$.

Lemma 5. Let T be a tree and $u \in V(T)$ such that $ux_1 \in E(T)$, $d_T(u) \ge 2$, $d_T(x_1) = 1$ and u is a weak support vertex. If T_1 is the tree obtained from T by adding a H_k and joining x_1 to the center of H_k , then $\gamma_{dve}(T_1) = \gamma_{dve}(T) + 2k$.

Lemma 6. Let T be a tree and $u \in V(T)$ such that $ux_1 \in E(T)$, $d_T(u) \ge 2$, $d_T(x_1) = 1$ and u is a weak support vertex. If T_1 is the tree obtained from T by adding a path $P_4 = y_1y_2y_3y_4$ and joining y_1 to x_1 , then $\gamma_{dve}(T_1) = \gamma_{dve}(T) + 2$.

In what follows, we provide an upper bound of the double vertex-edge domination number for trees in terms of the order n, number of leaves l and support vertices s. In order to characterize the trees attaining this bound, we introduce a family Γ of trees $T = T_k$ that can be obtained as follows. Let $T_1 \in \{P_6\}$. If $i \geq 2$, then T_{i+1} can be obtained recursively from T_i by one of the following operations:

• Operation τ_1 : Attach a vertex and join it to any support vertex of T_i .

• Operation τ_2 : Suppose that ux_1x_2 is a path in T_i in which $d_{T_i}(u) \ge 2$, $d_{T_i}(x_1) = 2$ and $d_{T_i}(x_2) = 1$. Attach a path P_3 and join one of its leaves to u. • Operation τ_3 : Suppose that $ux_1 \in E(T_i)$ in T_i in which $d_{T_i}(u) \ge 2$,

 $d_{T_i}(x_1) = 1$ and u is a weak support vertex. Attach a H_k and join x_1 to the center of H_k .

• Operation τ_4 : Suppose that $ux_1 \in E(T_i)$ in T_i in which $d_{T_i}(u) \geq 2$, $d_{T_i}(x_1) = 1$ and u is a weak support vertex. Attach a P_4 and join x_1 to one leaf of P_4 .

Theorem 1. If $T \in \Gamma$, then $\gamma_{dve}(T) = \frac{n-l}{2} + s$.

Proof. We use an induction on the number k of operations performed to construct the tree T. If $T = P_6$, then $\gamma_{dve}(T) = 4 = \frac{n-l}{2} + s$. Suppose the property is true for all trees of Γ constructed with $k - 1 \geq 0$ operations. Let $T = T_k$ with $k \geq 2$, $T' = T_{k-1}$, and assume that T' has order n' with l' leaves and s' support vertices. We will discuss it from the following cases.

Case 1. T is obtained from T' by Operation τ_1 . Clearly, n = n' + 1, s = s'and l = l' + 1. By Lemma 1, $\gamma_{dve}(T) = \gamma_{dve}(T')$. By induction on T', we obtain that $\gamma_{dve}(T) = \gamma_{dve}(T') = \frac{n'-l'}{2} + s' = \frac{n-l}{2} + s$. **Case 2.** T is obtained from T' by Operation τ_2 . Clearly, n = n' + 3,

s = s' + 1 and l = l' + 1. By Lemma 4, $\gamma_{dve}(T) = \gamma_{dve}(T') + 2$. By induction on T', we obtain that $\gamma_{dve}(T) = \gamma_{dve}(T') + 2 = \frac{n'-l'}{2} + s' + 2 = \frac{n-l}{2} + s$. **Case 3.** T is obtained from T' by Operation τ_3 . Clearly, n = n' + 3k + 1,

s = s' + k - 1 and l = l' + k - 1. By Lemma 5, $\gamma_{dve}(T) = \gamma_{dve}(T') + 2k$. By induction on T', we obtain that $\gamma_{dve}(T) = \gamma_{dve}(T') + 2k = \frac{n'-l'}{2} + s' + 2k = 1$ $\frac{n-l}{2} + s.$

Case 4. T is obtained from T' by Operation τ_4 . Clearly, n = n' + 4, s = s'and l = l'. By Lemma 6, $\gamma_{dve}(T) = \gamma_{dve}(T') + 2$. By induction on T', we obtain that $\gamma_{dve}(T) = \gamma_{dve}(T') + 2 = \frac{n'-l'}{2} + s' + 2 = \frac{n-l}{2} + s$.

We now are ready to establish our upper bound.

Theorem 2. Let T be a tree of order $n \ge 4$ with l leaves and s support vertices. If T is not a star, then $\gamma_{dve}(T) \leq \frac{n-l}{2} + s$ with equality if and only if $T \in \Gamma$.

Proof. If $T \in \Gamma$, then by Theorem 1, $\gamma_{dve}(T) = \frac{n-l}{2} + s$. To prove that if T is a tree of order $n \ge 4$ with l leaves and s support vertices and T is not a star, then $\gamma_{dve}(T) \leq \frac{n-l}{2} + s$ with equality only if $T \in \Gamma$, we proceed by induction on the order n. Since $n \ge 4$ and T is not a star, $diam(T) \ge 3$. If diam(T) = 3, then T is a double star and $\gamma_{dve}(T) = 2 < \frac{n-l}{2} + s$. So assume that $diam(T) \ge 4$. Assume that every tree T' of order $4 \le n' < n$ and with l' leaves and s' support vertices satisfies $\gamma_{dve}(T') \le \frac{n'-l'}{2} + s'$ with equality only if $T' \in \Gamma$. Let

T be a tree of order n and with l leaves and s support vertices and T is not a star.

If some support vertex of T, say u, is strong, then let T' be the tree obtained from T by removing a leaf adjacent to u. By Lemma 1, $\gamma_{dve}(T) = \gamma_{dve}(T')$. Clearly, n' = n - 1, l' = l - 1 and s' = s. Applying the induction hypothesis to T', $\gamma_{dve}(T) = \gamma_{dve}(T') \leq \frac{n'-l'}{2} + s' = \frac{n-l}{2} + s$. Further, if $\gamma_{dve}(T) = \frac{n-l}{2} + s$, then $\gamma_{dve}(T') = \frac{n'-l'}{2} + s'$ and $T' \in \Gamma$. Therefore, T is obtained from T' by using Operation τ_1 and $T \in \Gamma$. Henceforth, we can assume that every support vertex of T is weak.

Choose a vertex r as a root of T such that r is a leaf of path of maximum length in T. Let t be a leaf at maximum distance from r and v, u, w, z be the parents of t, v, u, w, respectively, in the rooted tree. By T_x , we denote the sub-tree induced by a vertex x and its descendants in the rooted tree T. Since T has no strong support vertex, $d_T(v) = 2$.

Suppose that $d_T(u) \ge 3$. If u is a support vertex, then let T' be the tree obtained from T by removing the leaf neighbor of u. By Lemma 2, $\gamma_{dve}(T) =$ $\gamma_{dve}(T')$. Clearly, n' = n - 1, l' = l - 1 and s' = s - 1. By induction on T', $\gamma_{dve}(T) = \gamma_{dve}(T') \leq \frac{n'-l'}{2} + s' < \frac{n-l}{2} + s$. Now, if $d_T(u) \geq 3$, then every child

170

of u is a support vertex. Let $T' = T - T_v$. By Lemma 3, $\gamma_{dve}(T) = \gamma_{dve}(T') + 1$. Clearly, n' = n - 2, l' = l - 1 and s' = s - 1. By induction on T', $\gamma_{dve}(T) = \gamma_{dve}(T') + 1 \le \frac{n'-l'}{2} + s' + 1 < \frac{n-l}{2} + s$. Therefore, in what follows, we may assume that $d_T(u) = 2$.

If diam(T) = 4, then $T = P_5$ and $\gamma_{dve}(T) = 3 < \frac{n-l}{2} + s$. If diam(T) = 5, then by exchanging the root of T to t, we have $T = P_6$ and $\gamma_{dve}(T) = 4 = \frac{n-l}{2} + s$. So, $P_6 \in \Gamma$. From now on, we may assume that T has diameter at least six.

If w has a child which is a support vertex, then $d_T(w) \geq 3$. Let $T' = T - T_u$. By Lemma 4, $\gamma_{dve}(T) = \gamma_{dve}(T') + 2$. Clearly, n' = n - 3, l' = l - 1 and s' = s - 1. Applying the induction hypothesis to T', $\gamma_{dve}(T) = \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 = \frac{n-l}{2} + s$. Further, if $\gamma_{dve}(T) = \frac{n-l}{2} + s$, then $\gamma_{dve}(T') = \frac{n'-l'}{2} + s'$ and $T' \in \Gamma$. Therefore, T is obtained from T' by using Operation τ_2 and $T \in \Gamma$. Hence, we assume that w has no child which is a support vertex.

Let y be the parent of vertex z. In the following, we will discuss it from the following cases.

Case 1. $w \in S(T)$.

Case 1.1. $d_T(w) = d \ge 4$. Then $d - 2 \ge 2$ and $T_w = H'_{d-2}$. If $d_T(z) \ge 3$, then let $T' = T - T_w$. Then $\gamma_{dve}(T) \le \gamma_{dve}(T') + \gamma_{dve}(H'_{d-2}) = \gamma_{dve}(T') + 2(d-2)$. Clearly, n' = n - 3(d-2) - 2, l' = l - (d-1) and s' = s - (d-1). Applying the induction hypothesis to T', $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2(d-2) \le \frac{n'-l'}{2} + s' + 2(d-2) < \frac{n-l}{2} + s$. Suppose that $d_T(z) = 2$. If diam(T) = 6, then $T = H'_{d-1}$. So $\gamma_{dve}(T) = 1$

Suppose that $d_T(z) = 2$. If diam(T) = 6, then $T = H'_{d-1}$. So $\gamma_{dve}(T) = 2(d-1) < \frac{n-l}{2} + s$. If $diam(T) \ge 7$, then let $T' = T - T_w$. Then $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2(d-2)$. Clearly, n' = n - 3(d-2) - 2, l' = l - (d-2) and $s' \le s - (d-2)$. Applying the induction hypothesis to T', $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2(d-2) \le \frac{n'-l'}{2} + s' + 2(d-2) < \frac{n-l}{2} + s$.

 $\frac{n'-l'}{2} + s' + 2(d-2) < \frac{n-l}{2} + s.$ **Case 1.2.** $d_T(w) = 3$. Then $T_w = P_5$. If $d_T(z) \ge 3$, then let $T' = T - T_w$. Then $\gamma_{dve}(T) \le \gamma_{dve}(T') + 3$. Clearly, n' = n - 5, l' = l - 2 and s' = s - 2. Applying the induction hypothesis to T', $\gamma_{dve}(T) \le \gamma_{dve}(T') + 3 \le \frac{n'-l'}{2} + s' + 3 < \frac{n-l}{2} + s.$

If $d_T(z) = 2$, then let $T' = T - (T_w \setminus \{w\})$. Then $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2$. Clearly, n' = n - 4, l' = l - 1 and s' = s - 1. Applying the induction hypothesis to T', $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 < \frac{n-l}{2} + s$.

Case 2. $w \notin S(T)$.

Case 2.1. $d_T(w) = d \ge 3$. Then $d - 1 \ge 2$ and $T_w = H_{d-1}$.

If $d_T(z) \ge 3$, then let $T' = T - T_w$. Then $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2(d-1)$. Clearly, n' = n - 3(d-1) - 1, l' = l - (d-1) and s' = s - (d-1). Applying the induction hypothesis to T', $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2(d-1) \le \frac{n'-l'}{2} + s' + 2(d-1) < \frac{n-l}{2} + s$.

Suppose that $d_T(z) = 2$. If diam(T) = 6, then $T = H_d$. So $\gamma_{dve}(T) = 2(d-1) < \frac{n-l}{2} + s$. Hence, we can assume that $diam(T) \ge 7$.

If $y \in S(T)$, then let $T' = T - T_w$. Then $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2(d-1)$. Clearly, n' = n - 3(d-1) - 1, l' = l - (d-2) and s' = s - (d-1). Applying the induction hypothesis to T', $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2(d-1) \leq \frac{n'-l'}{2} + s' + 2(d-1) < \frac{n-l}{2} + s$.

If $y \notin S(T)$, then let $T' = T - T_w$. Then $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2(d-1)$. Clearly, n' = n - 3(d-1) - 1, l' = l - (d-2) and s' = s - (d-2). Applying the induction hypothesis to T', $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2(d-1) \leq \frac{n'-l'}{2} + s' + 2(d-1) \leq \frac{n-l}{2} + s$. Further, if $\gamma_{dve}(T) = \frac{n-l}{2} + s$, then $\gamma_{dve}(T') = \frac{n'-l'}{2} + s'$ and $T' \in \Gamma$. Therefore, T is obtained from T' by using Operation τ_3 and $T \in \Gamma$.

Case 2.2. $d_T(w) = 2$. If diam(T) = 6, 7, then by exchanging the root of T to t, we have $T = P_7$ and $T = P_8$, respectively. It is obvious that the result holds. So we can assume that $diam(T) \ge 8$. If $d_T(z) \ge 3$, then let $T' = T - T_w$. Clearly, n' = n - 4, l' = l - 1 and s' = s - 1.

Suppose that there exists a leaf $y_4 \in L(T') \setminus \{r\}$ such that $d_{T'}(z, y_4) = 4$. Assume that $zy_1y_2y_3y_4$ is the path in T'. Since $d_T(r, y_4) = diam(T)$, we can assume that $d_{T'}(y_2) = d_{T'}(y_3) = 2$. Then there exists a γ_{dve} -set D' of T' such that $y_2, y_3 \in D'$. Since edge zy_1 is ve-dominated by at least two vertex, $N_{T'}[z] \cap D' \neq \emptyset$. Say $b \in N_{T'}[z] \cap D'$. Then edge zw is ve-dominated by b. So $D' \cup \{u, v\}$ is a double vertex-edge dominating set of T. Hence, $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2$. Applying the induction hypothesis to $T', \gamma_{dve}(T) \leq \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 < \frac{n-l}{2} + s$. Hence we can assume that every leaf in $L(T') \setminus \{r\}$ has distance at most 3 from z.

Suppose that there exists a leaf $y_3 \in L(T')$ such that $d_{T'}(z, y_3) = 3$. Say $zy_1y_2y_3$ being the path in T'. Since $d_{T'}(y_2) = 2$, there exists a γ_{dve} -set D' of T' such that $y_1, y_2 \in D'$. Then edge zw is ve-dominated by y_1 . So $D' \cup \{u, v\}$ is a double vertex-edge dominating set of T. Hence, $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2$. Applying the induction hypothesis to $T', \gamma_{dve}(T) \leq \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 < \frac{n-l}{2} + s$.

Hence we can assume that every leaf in $L(T') \setminus \{r\}$ has distance at most 2 from z. So z is a support vertex or is adjacent to a support vertex in T'. Then there exists a γ_{dve} -set D' of T' such that $z \in D'$. Then edge zw is ve-dominated by z. So $D' \cup \{u, v\}$ is a double vertex-edge dominating set of T. Hence, $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2$. Applying the induction hypothesis to T', $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 < \frac{n-l}{2} + s$.

Suppose that $d_T(z) = 2$ and $d_T(y) = 2$. Let $T' = T - T_w$. Then $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2$. Clearly, n' = n - 4, l' = l and s' = s. Applying the induction hypothesis to T', $\gamma_{dve}(T) \leq \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 \leq \frac{n-l}{2} + s$. Further, if $\gamma_{dve}(T) = \frac{n-l}{2} + s$, then $\gamma_{dve}(T') = \frac{n'-l'}{2} + s'$ and $T' \in \Gamma$. Therefore, T is obtained from T' by using Operation τ_4 and $T \in \Gamma$.

Suppose that $d_T(z) = 2$ and $d_T(y) \ge 3$. Let $T' = T - T_w$. It is obvious that $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2$. If y is a support vertex in T, then n' = n - 4, l' = l and s' = s - 1. Applying the induction hypothesis to T', $\gamma_{dve}(T) \le \gamma_{dve}(T') + 2 \le 1$

172

 $\frac{n'-l'}{2} + s' + 2 < \frac{n-l}{2} + s. \text{ If } y \text{ is not a support vertex in } T, \text{ then } n' = n - 4, \\ l' = l \text{ and } s' = s. \text{ By Lemma } 6, \\ \gamma_{dve}(T) = \gamma_{dve}(T') + 2. \text{ Applying the induction} \\ \text{hypothesis to } T', \\ \gamma_{dve}(T) = \gamma_{dve}(T') + 2 \leq \frac{n'-l'}{2} + s' + 2 \leq \frac{n-l}{2} + s. \text{ Further,} \\ \text{if } \gamma_{dve}(T) = \frac{n-l}{2} + s, \text{ then } \gamma_{dve}(T') = \frac{n'-l'}{2} + s' \text{ and } T' \in \Gamma. \text{ Therefore, } T \text{ is} \\ \text{obtained from } T' \text{ by using Operation } \tau_4 \text{ and } T \in \Gamma.$

3. Algorithms

Now, we work on an algorithm for finding a minimum double *ve*-dominating set of a tree. For technical reasons, we actually consider a slightly more general problem, which can be formulated as follows. Let the edge set of a tree T = (V, E) be partitioned into three subsets, $E = W \cup B \cup Y$, each consisting of edges labeled W, B, Y, respectively. Let the vertex set of the tree T be partitioned into two subsets, $V = F \cup R$, each consisting of vertices labeled F and R, respectively.

For simplicity, the terms F, R, W, B, Y represent sets and labels interchangeably. A one-two ve-dominating set of T is a set D which satisfies the following three conditions:

(1) $R \subseteq D$;

(2) For any edge $e \in Y$, e is ve-dominated by at least one vertex in $D \setminus R$.

(3) For any edge $e \in W$, e is *ve*-dominated by at least two vertices in $D \setminus R$. The one-two *ve*-domination number $\gamma_{12}(T)$ is the minimum cardinality among all one-two *ve*-dominating sets of T. A one-two *ve*-dominating set of Twith cardinality $\gamma_{12}(T)$ is also called a γ_{12} -set.

Note that the double vertex-edge domination problem is just the one-two ve-domination problem with F = V(T), W = E(T) and $R = Y = B = \emptyset$. This generalization can be viewed as a labeling algorithm, which appears in [2] for the first time, and is afterwards widely used in the literature for solving the domination-related problem in [3] and [8]. However, unlike the ordinary practice to partition the vertex set, we partition both the vertex set and the edge set, as can be seen in above definitions. To obtain a polynomial time algorithm for finding a minimum one-two ve-dominating set of a tree, we should design an edge data structure as follows.

First root the tree T at any leaf, say, r. The height of T is the maximum distance between r and all other vertices. Let h be the height of T. The *i*-th level A_i $(0 \le i \le h)$ be the set of vertices of T which are at distance i from the root. For such a rooted tree T with order n we can number the edges of T with $1, 2, \ldots, n-1$ as follows. We go on every level starting with level h to level 1. For each i $(1 \le i \le h)$, we traverse the edges connecting the vertices on level i and i-1 in arbitrary order, say from left to right. Finally, we list out the fathers of all edges of T (we mean that the edge numbered n-1 has no father by writing father(n-1) = 0), and thus we can represent T by a data structure called an edge father array. Fig. 1 shows an example of a tree and its edge father array. The edge numbered n-1 is called the edge root of T.

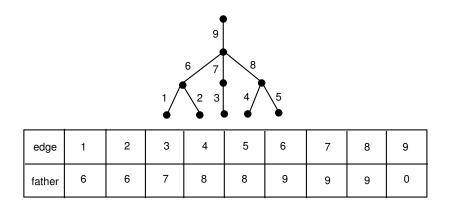


FIGURE 1. A rooted tree with its edge father array.

In order to obtain the $\gamma_{dve}(T)$, we will design an algorithm for the $\gamma_{12}(T)$ with F = V(T), W = E(T) and $R = Y = B = \emptyset$.

Algorithm 1 Computes the one-two ve-domination number of a tree T

Input: an edge rooted tree T represented by its edge father array [1, 2, ...,n-1]. An edge assignment L_1 and a vertex assignment L_2 such that every edge is labeled W and every vertex is labeled by F, respectively. Output: a minimum one-two ve-dominating set of T. $T' \leftarrow T; D \leftarrow \emptyset; R \leftarrow \emptyset; Y \leftarrow \emptyset; B \leftarrow \emptyset;$ for e = 1 to n - 2 do let e = vu, where v is a leaf of T', u is the parent vertex of v; $father(e) \leftarrow$ the father edge of e; $p(e) \leftarrow$ the parent vertex u of v; if $v \in F$, $u \in F$ and $e \in W$ then $L_2(u) \leftarrow R; L_2(p(father(e))) \leftarrow R;$ $L_1(e') \leftarrow B$ for every edge $e' \in N[father(e)];$ $L_1(e') \leftarrow Y$ for every edge $e' \in N_2(father(e)) \cap W;$ $L_1(e') \leftarrow B$ for every edge $e' \in N_2(father(e)) \cap Y;$ $T' \leftarrow T' - \{v\};$ if $v \in F$, $u \in F$ and $e \in Y$ then if $p(father(e)) \in R$ then $L_2(u) \leftarrow R;$ $L_1(e') \leftarrow B$ for every edge $e' \in N[father(e)];$ $T' \leftarrow T' - \{v\};$ else $L_2(p(father(e))) \leftarrow R;$ $L_1(e') \leftarrow Y$ for every edge $e' \in N_{\leq 2}(father(e)) \cap W;$ $L_1(e') \leftarrow B$ for every edge $e' \in N_{\leq 2}(father(e)) \cap Y;$

```
T' \leftarrow T' - \{v\};
     if v \in F, u \in R and e \in Y then
         L_2(p(father(e))) \leftarrow R;
         L_1(e') \leftarrow Y for every edge e' \in N_{\leq 2}(father(e)) \cap W;
         L_1(e') \leftarrow B for every edge e' \in N_{\leq 2}(father(e)) \cap Y;
         T' \leftarrow T' - \{v\};
     if v \in R, u \in F and e \in Y then
         L_2(p(father(e))) \leftarrow R;
         L_1(e') \leftarrow Y for every edge e' \in N_{\leq 2}(father(e)) \cap W;
         L_1(e') \leftarrow B for every edge e' \in N_{\leq 2}(father(e)) \cap Y;
         D \leftarrow D \cup \{v\};
         T' \leftarrow T' - \{v\};
     if e \in B then
         if v \in F then
              T' \leftarrow T' - \{v\};
         else
              D \leftarrow D \cup \{v\}; T' \leftarrow T' - \{v\};
end for
if e \in W then
     D \leftarrow D \cup \{v, u\};
if e \in Y then
     D \leftarrow D \cup (\{v, u\} \cap R) \cup \{w\}, where w \in (\{v, u\} \cap F);
if e \in B then
     D \leftarrow D \cup (\{v, u\} \cap R).
      return D
```

Theorem 3. Algorithm 1 produces a minimum one-two ve-dominating set of a tree T in polynomial time.

Proof. It is easy to see that the running time of algorithm 1 is polynomial time. For the correctness of the algorithm, it is sufficient to consider T with at least two edges, since the algorithm obviously produces a minimum one-two ve-dominating set of a tree with one edge correctly. Assume that e = vu is a pending edge of T and v is a leaf in the lowest level of the edge rooted tree. Then the proof of Theorem 3 is followed by five simple claims.

Claim 1. If $v \in F$, $u \in F$ and $e \in W$, then there exists a minimum one-two ve-dominating set of T containing both u and p(father(e)).

Proof. Let D be a minimum one-two *ve*-dominating set of T. Since $e \in W$, then there exist at least two vertices in N[u] to *ve*-dominate e. Let $D' = (D \setminus (D \cap N[u])) \cup \{u, p(father(e))\}$. It is easy to see that D' is another minimum one-two *ve*-dominating set of T containing both u and p(father(e)). \Box

Claim 2. Suppose that $v \in F$, $u \in F$ and $e \in Y$. If $p(father(e)) \notin R$, then there exists a minimum one-two ve-dominating set of T containing p(father(e)). If $p(father(e)) \in R$, then there exists a minimum one-two ve-dominating set of T containing u.

Proof. Let D be a minimum one-two ve-dominating set of T. Suppose that $e \in Y$ and $p(father(e)) \notin R$. Then there exists at least one vertex in N[u] to ve-dominate e. Let $D' = (D \setminus (D \cap N[u])) \cup \{p(father(e))\}$. It is easy to see that D' is another minimum one-two ve-dominating set of T containing p(father(e)). Suppose that $e \in Y$ and $p(father(e)) \in R$. Then there exists at least one vertex $w \in N[u] \setminus \{p(father(e))\}$ to ve-dominate e. Let $D' = (D \setminus \{w\}) \cup \{u\}$. It is easy to see that D' is another minimum one-two ve-dominate e. Let $D' = (D \setminus \{w\}) \cup \{u\}$. It is easy to see that D' is another minimum one-two ve-dominating set of T containing both u and p(father(e)).

Claim 3. If $v \in F$, $u \in R$ and $e \in Y$, then there exists a minimum one-two ve-dominating set of T containing p(father(e)).

Proof. Let D be a minimum one-two *ve*-dominating set of T. Since $v \in F$, $u \in R$ and $e \in Y$, then there exists at least one vertex $w \in N(u)$ to *ve*-dominate e. Let $D' = (D \setminus \{w\}) \cup \{p(father(e))\}$. It is easy to see that D' is another minimum one-two *ve*-dominating set of T containing p(father(e)). \Box

Claim 4. If $v \in R$, $u \in F$ and $e \in Y$, then there exists a minimum one-two ve-dominating set of T containing p(father(e)).

Proof. Let D be a minimum one-two *ve*-dominating set of T. Since $v \in R$, $u \in F$ and $e \in Y$, then there exists at least one vertex $w \in N[u] \setminus \{v\}$ to *ve*-dominate e. Let $D' = (D \setminus \{w\}) \cup \{p(father(e))\}$. It is easy to see that D' is another minimum one-two *ve*-dominating set of T containing p(father(e)). \Box

Claim 5. Suppose that $e \in B$. If $v \in F$, then there exists a minimum one-two ve-dominating set of T not containing v. If $v \in R$, then there exists a minimum one-two ve-dominating set of T containing v.

Proof. Let D be a minimum one-two ve-dominating set of T. Suppose that $e \in B$ and $v \in F$. If $v \in D$, then let $w \in N[u] \setminus \{v\}$ and $D' = (D \setminus \{v\}) \cup \{w\}$. Then D' is a minimum one-two ve-dominating set of T not containing v. Suppose that $e \in B$ and $v \in R$. By the definition of one-two ve-dominating set, there exists a minimum one-two ve-dominating set of T containing v. \Box

Acknowledgments. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3A04036669).

References

- R. Boutrig, M. Chellali, T. W. Haynes, and S. T. Hedetniemi, Vertex-edge domination in graphs, Aequationes Math. 90 (2016), no. 2, 355–366. https://doi.org/10.1007/s00010-015-0354-2
- [2] E. J. Cockayne, S. Goodman, and S. T. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975) 41–44.
- [3] S. T. Hedetniemi, R. Laskar, and J. Pfaff, A linear algorithm for finding a minimum dominating set in a cactus, Discrete Appl. Math. 13 (1986), no. 2-3, 287-292. https: //doi.org/10.1016/0166-218X(86)90089-2
- B. Krishnakumari, M. Chellali, and Y. B. Venkatakrishnan, Double vertex-edge domination, Discrete Math. Algorithms Appl. 9 (2017), no. 4, 1750045, 11 pp. https: //doi.org/10.1142/S1793830917500458
- [5] B. Krishnakumari, Y. B. Venkatakrishnan, and M. Krzywkowski, Bounds on the vertexedge domination number of a tree, C. R. Math. Acad. Sci. Paris 352 (2014), no. 5, 363-366. https://doi.org/10.1016/j.crma.2014.03.017
- [6] J. Lewis, S. T. Hedetniemi, T. W. Haynes, and G. H. Fricke, Vertex-edge domination, Util. Math. 81 (2010), 193–213.
- [7] J. W. Peters, Theoretical and algorithmic results on domination and connectivity, Ph.D. thesis, Clemson University, 1986.
- [8] Y. Zhao, Z. Liao, and L. Miao, On the algorithmic complexity of edge total domination, Theoret. Comput. Sci. 557 (2014), 28-33. https://doi.org/10.1016/j.tcs.2014.08.005

XUE-GANG CHEN DEPARTMENT OF MATHEMATICS NORTH CHINA ELECTRIC POWER UNIVERSITY BEIJING 102206, P. R. CHINA *Email address:* gxcxdm@163.com

Moo Young Sohn Department of Mathematics Changwon National University Changwon 51140, Korea Email address: mysohn@changwon.ac.kr