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LEGENDRE TRAJECTORIES OF TRANS-S-MANIFOLDS

Şaban Güvenç

Abstract. In this paper, we consider Legendre trajectories of trans-S-

manifolds. We obtain curvature characterizations of these curves and

give a classification theorem. We also investigate Legendre curves whose
Frenet frame fields are linearly dependent with certain combination of

characteristic vector fields of the trans-S-manifold.

1. Introduction

Let (M, g) be a Riemannian manifold, F a closed 2-form and let us denote
the Lorentz force onM by Φ, which is a (1, 1)-type tensor field. If F is associated
by the relation

(1) g(ΦX,Y ) = F (X,Y ), ∀X,Y ∈ χ(M),

then it is called a magnetic field ([1], [3] and [7]). Let ∇ be the Riemannian
connection associated to the Riemannian metric g and γ : I → M a smooth
curve. If γ satisfies the Lorentz equation

(2) ∇γ′(t)γ
′(t) = Φ(γ′(t)),

then it is called a magnetic curve for the magnetic field F . The Lorentz equa-
tion is a generalization of the equation for geodesics. Magnetic curves have
constant speed. If the speed of the magnetic curve γ is equal to 1, then it is
called a normal magnetic curve [8]. For extensive information about almost
contact metric manifolds and Sasakian manifolds, we refer to Blair’s book [4].

Let γ(t) be a Frenet curve parametrized by the arc-length parameter t in an
almost contact metric manifold M . The function θ(t) defined by cos[θ(t)] =
g(T (t), ξ) is called the contact angle function. A curve γ is called a slant
curve if its contact angle is a constant [6]. If a slant curve is with contact

angle π
2 , then it is called a Legendre curve [4]. Likewise, C. Özgür and the

present author defined Legendre curves of S-manifolds in [15]. A curve γ : I
→ M = (M2n+s, f, ξi, ηi, g) is called a Legendre curve if ηi(T ) = 0, for every
i = 1, . . . , s, where T is the tangent vector field of γ. This definition can be
used in trans-S-manifolds.
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Let γ be a curve in an almost contact metric manifold (M,ϕ, ξ, η, g). In [12],
Lee, Suh and Lee introduced the notions of C-parallel and C-proper curves
in the tangent and normal bundles. A curve γ in an almost contact metric
manifold (M,ϕ, ξ, η, g) is defined to be C-parallel if ∇TH = λξ, C-proper
if ∆H = λξ, C-parallel in the normal bundle if ∇⊥TH = λξ, C-proper in
the normal bundle if ∆⊥H = λξ, where T is the unit tangent vector field
of γ, H is the mean curvature vector field, ∆ is the Laplacian, λ is a non-
zero differentiable function along the curve γ, ∇⊥ and ∆⊥ denote the normal
connection and Laplacian in the normal bundle, respectively [12]. The present

author and C. Özgür generalized this definition for S-manifolds in [10]. In the
present study, this definition will be used in trans-S-manifolds as well.

An almost contact metric manifold M is called a trans-Sasakian manifold
[14] if there exist two functions α and β on M such that

(3) (∇Xϕ)Y = α[g(X,Y )ξ − η(Y )X] + β[g(ϕX, Y )ξ − η(Y )ϕX]

for any vector fields X,Y on M . C-parallel and C-proper slant curves of trans-
Sasakian manifolds were studied in [9].

2. Preliminaries

Firstly, let us recall framed f -manifolds. Let (M, g) be a (2n+s)-dimensional
Riemann manifold. It is called a framed metric f -manifold with a framed metric
f -structure (f, ξi, ηi, g), i ∈ {1, . . . , s} , if it satisfies the following equations:

(4) f2 = −I +
s∑
i=1

ηi ⊗ ξi, ηi(ξj) = δij , f (ξi) = 0, ηi ◦ f = 0

(5) g(fX, fY ) = g(X,Y )−
s∑
i=1

ηi(X)ηi(Y ),

(6) ηi(X) = g(X, ξ).

Here, f is a (1, 1) tensor field of rank 2n; ξ1, . . . , ξs are vector fields; η1, . . . , ηs
are 1-forms and g is a Riemannian metric on M ; X,Y ∈ χ(M) and i, j ∈
{1, . . . , s} [13]. (f, ξi, ηi, g) is called S-structure, when the Nijenhuis tensor of
ϕ is equal to −2dηi ⊗ ξi for all i ∈ {1, . . . , s} [4].

Secondly, the concept of trans-S-manifolds is as follows:
A (2n + s)-dimensional metric f -manifold M is called an almost trans-S-

manifold if it satisfies

(7) (∇Xf)Y =

s∑
i=1

[
αi
{
g (fX, fY ) ξi + ηi(Y )f2X

}
+βi {g (fX, Y ) ξi − ηi(Y )fX}

]
,

where αi, βi (i = 1, . . . , s) are smooth functions and X,Y ∈ χ(M) [2]. If M
is normal, then it is called a trans-S-manifold. If s = 1, a trans-S-manifold
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becomes a trans-Sasakian manifold. In trans-Sasakian case, the above condition
implies normality. But, for s ≥ 2, this statement is no longer valid [2]. Since

(8) [f, f ] (X,Y ) + 2
∑s
i=1 dηi (X,Y ) ξi =

∑s
i,j=1 [ηj (∇Xξi) ηj (Y )− ηj (∇Y ξi) ηj (X)] ξi,

and {ξi}si=1 is g-orthonormal, it is found that

s∑
j=1

[ηj (∇Xξi) ηj (Y )− ηj (∇Y ξi) ηj (X)] = 0

for all i = 1, . . . , s. After calculations, one obtains

(9) ∇Xξi = −αifX − βif2X

for i = 1, . . . , s [2].
The notion of a Frenet curve is well-known as below:
Let us consider a unit-speed curve γ : I →M in an n-dimensional Riemann-

ian manifold (M, g). If there exist orthonormal vector fields E1, E2, . . . , Er
along γ satisfying

(10)

E1 = γ′ = T,

∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3,

· · ·
∇TEr = −κr−1Er−1,

then γ is called a Frenet curve of osculating order r, where κ1, . . . , κr−1 are
positive functions on I and 1 ≤ r ≤ n.

A Frenet curve of osculating order 1 is called a geodesic. A Frenet curve of
osculating order 2 is a circle if κ1 is a non-zero positive constant. A Frenet
curve of osculating order r ≥ 3 is called a helix of order r, when κ1, . . . , κr−1

are non-zero positive constants; a helix of order 3 is simply called a helix.
Finally, we can define Legendre curves in trans-S-manifolds like:

Definition. Let M = (M2n+s, f, ξi, ηi, g) be a trans-S-manifold. Consider a
unit-speed smooth curve γ : I →M and its unit tangential vector field T = γ′.
If ηi(T ) = 0 for all i = 1, 2, . . . , s, then it is called a Legendre curve.

Here are the direct results from the definition:

f2T = −T,

(11) κ1ηi (E2) + βi = 0,

(∇T f)T =

s∑
i=1

αiξi,

which gives us

∇T fT = (∇T f)T + f (∇TT )
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=

s∑
i=1

αiξi + f (κ1E2)(12)

=

s∑
i=1

αiξi + κ1fE2.

Let us recall what a magnetic curve is and what we mean by trajectory:
Let M2n+s = (M2n+s, f, ξi, ηi, g) be a trans-S-manifold and Ω the funda-

mental 2-form of M2n+s defined by

(13) Ω(X,Y ) = g(X, fY ),

(see [13]). From Proposition 3.1(i) in [2], for a trans-S-manifold,

(14) dΩ = 2Ω ∧
s∑
i=1

βiηi.

When Ω is closed, the magnetic field Fq on M2n+s can be defined by

Fq(X,Y ) = qΩ(X,Y ),

where X and Y are vector fields on M2n+s and q is a real constant. Fq is called
the contact magnetic field with strength q [11]. If q = 0, then the magnetic
curves are geodesics of M2n+s. Because of this reason one can consider q 6= 0
(see [5] and [8]).

From (1) and (13), the Lorentz force Φ associated to the contact magnetic
field Fq can be written as

Φq = −qf.
So the Lorentz equation (2) can be written as

(15) ∇TT = −qfT,
where γ : I ⊆ R → M2n+s is a smooth unit-speed curve and T = γ′ (see [8]
and [11]).

From 14, for trans-S-manifolds, notice that Ω does not need to be closed in
general. But, we can still look for curves satisfying ∇TT = −qϕT in a trans-
S-manifold, calling them trajectories. In this paper, for sake of computations,
Legendre trajectories will be considered. The general solution of the problem
is in progress.

For the last part of this study, it is necessary to define C-parallel C-proper
curves as below:

We can generalize the definition from [10] to trans-S-manifolds:

Definition ([10]). Let γ : I → (M2n+s, f, ξi, ηi, g) be a unit speed curve in a
trans-S-manifold. Then γ is called

i) C-parallel (in the tangent bundle) if

∇TH = λ

s∑
i=1

ξi,
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ii) C-parallel in the normal bundle if

∇⊥TH = λ

s∑
i=1

ξi,

iii) C-proper (in the tangent bundle) if

∆H = λ

s∑
i=1

ξi,

iv) C-proper in the normal bundle if

∆⊥H = λ

s∑
i=1

ξi,

where H is the mean curvature field of γ, λ is a real-valued non-zero dif-
ferentiable function, ∇ is the Levi-Civita connection, ∇⊥ is the Levi-Civita
connection in the normal bundle, ∆ is the Laplacian and ∆⊥ is the Laplacian
in the normal bundle.

From the definition, same direct proposition as in [10] is obtained:

Proposition 2.1 ([10]). Let γ : I → (M2n+s, f, ξi, ηi, g) be a unit speed curve
in a trans-S-manifold. Then

i) γ is C-parallel (in the tangent bundle) if and only if

(16) − κ2
1T + κ′1E2 + κ1κ2E3 = λ

s∑
i=1

ξi,

ii) γ is C-parallel in the normal bundle if and only if

(17) κ′1E2 + κ1κ2E3 = λ

s∑
i=1

ξi,

iii) γ is C-proper (in the tangent bundle) if and only if

(18) 3κ1κ
′
1T +

(
κ3

1 + κ1κ
2
2 − κ′′1

)
E2−(2κ′1κ2 +κ1κ

′
2)E3−κ1κ2κ3E4 = λ

s∑
i=1

ξi,

iv) γ is C-proper in the normal bundle if and only if

(19)
(
κ1κ

2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3 − κ1κ2κ3E4 = λ

s∑
i=1

ξi.

3. Main results on Legendre trajectories

Let M = (M,f, ξi, ηi, g) be a trans-S-manifold and γ : I → M a unit-
speed Legendre curve with arc-length parameter t. Assume that γ satisfies
∇TT = −qfT. Then, using (5) and (10), we have

∇TT = −qfT = κ1E2
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and

g(fT, fT ) = 1.

So,

fT 6= 0.

Using the norm of both sides gives us

(20) κ1 = |q| .
Thus

|q|E2 = −qfT
and

(21) fT = δE2,

where δ = sgn(−q). From (11) and (21), we have

βi |γ = 0.

(21) gives us

(22) fE2 = −δT.
From (12), (21) and (22), we can write

∇T fT = δ∇TE2 = δ(−κ1T + κ2E3)

=

s∑
i=1

αiξi − κ1δT.

As a result, we find

(23) κ2E3 = δ

s∑
i=1

αiξi,

which gives us

(24) κ2 =

√√√√ s∑
i=1

α2
i .

Then

κ2 = 0⇔ αi |γ = 0.

Let κ2 6= 0. Notice that sgn (g (E3,
∑s
i=1 αiξi)) = δ. Using (23) and (24), we

find

(25) E3 =
δ√∑s
i=1 α

2
i

s∑
i=1

αiξi.

If we differentiate E3, we obtain

(26) κ3E4 = δ

s∑
i=1

(
αi√∑s
i=1 α

2
i

)′ξi.
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(27) κ3 =

√√√√ s∑
i=1

[(
αi√∑s
i=1 α

2
i

)′]2.

Moreover, if κ3 = 0, then

αi√∑s
i=1 α

2
i

= ci = constant, ∀i.

Hence
s∑
i=1

α2
i

(
s∑
i=1

c2i − 1

)
= 0.

So,
s∑
i=1

α2
i = 0⇔ κ2 = 0,

or
s∑
i=1

c2i = 1.

To sum up, if κ3 = 0 and κ2 6= 0, we have

E2 = δfT,

E3 = δ

s∑
i=1

ciξi,

where

(28) α2
i = c2i

s∑
i=1

α2
i ,∀i,

(29) ci = constant such that

s∑
i=1

c2i = 1.

Now we can state the following theorem:

Theorem 3.1. Let γ : I → M be a Legendre trajectory. Then γ is one of the
following:

1) a Legendre circle with κ1 = |q| and the Frenet frame field {T, δfT} , where
δ = sgn(−q). In this case, αi = 0, βi = 0,∀i.

2) a Legendre curve of osculating order r ≥ 3 with

κ1 = |q| , κ2 =

√√√√ s∑
i=1

α2
i ,

κ3 given in (27) and the Frenet frame field

{T, δfT,E3, E4, . . . , Er} ,
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where δ = sgn(−q); E3, E4 are given in (25) and (26), respectively. In this
case, αi 6= 0, ∃i, βi = 0,∀i. Moreover, if r = 3, equations (28) and (29) are
also satisfied and its Frenet frame field is

{T, δfT,E3} .

4. Main results of C-parallel and C-proper Legendre curves

Let M2n+s be a trans-S-manifold and γ : I → M a Legendre curve in M ,
i.e., ηi(T ) = 0,∀i. Now, we will consider four cases.

i) C-parallel in the tangent bundle:
From Proposition 2.1, we have

−κ2
1T + κ′1E2 + κ1κ2E3 = λ

s∑
i=1

ξi.

If we apply T to both sides, we have the following result:

Theorem 4.1. There does not exist a C-parallel Legendre curve (in the tangent
bundle) in a trans-S-manifold.

ii) C-parallel in the normal bundle:
From Proposition 2.1, we can write

(30) κ′1E2 + κ1κ2E3 = λ

s∑
i=1

ξi.

Now, let us consider two subcases r = 2 and r ≥ 3, where r denotes the
osculating order of γ.

a) r = 2.
In this case, since κ2 = 0, (30) becomes

(31) κ′1E2 = λ

s∑
i=1

ξi.

So, we can state the following theorem:

Theorem 4.2. Let r = 2. Then γ is C-parallel in the normal bundle if and
only if

κ1 = ∓
√
sβ,

λ = −β′,
s∑
i=1

ξi = ±
√
sE2.

In this case, β1 = β2 = · · · = βs = β and
s∑
i=1

αi = 0.
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Proof. If we apply ξj to (31), using the fact that g (ξj , ξi) = ηj(ξi) = δji, we
have

(32) κ′1ηj (E2) = λ,∀j.

Also, (11) gives us

(33) ηj (E2) =
−βj
κ1

.

From (32) and (33), we can write

(34) λ =
−κ′1
κ1

βj ,∀j.

This gives us β1 = β2 = · · · = βs = β for some function β. On the other hand,

(31) shows that
s∑
i=1

ξi and E2 are parallel. Since

∥∥∥∥∥
s∑
i=1

ξi

∥∥∥∥∥ =

√√√√g

(
s∑
i=1

ξi,

s∑
i=1

ξi

)
=
√
s and ‖E2‖ = 1,

we obtain

(35)

s∑
i=1

ξi = ±
√
sE2,

depending on their directions. From (9), replacing X = T , for a Legendre
curve, one may obtain

∇T ξi = −αifT − βif2T(36)

= −αifT + βiT.

Since r = 2, i.e., κ2 = 0, differentiating (35) and using (36), we find

(37) −

(
s∑
i=1

αi

)
fT +

(
s∑
i=1

βi

)
T = ±

√
s (−κ1T ) .

Then, fT ⊥ T gives us
s∑
i=1

αi = 0. We also have
s∑
i=1

βi = sβ. From (37), we get

(38) κ1 = ∓
√
sβ.

If we consider (34) and (38) together, we can write λ = −β′. �

b) r ≥ 3.
In this case, for a smooth function w = w(t), we have

(39)

s∑
i=1

ξi =
√
s (coswE2 + sinwE3) .
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If we differentiate the above equation, we have

(40)

s∑
i=1

βi = −
√
sκ1 cosw

and

(41) κ2 = ± 1√
s

s∑
i=1

αi − w′.

We also have

(42) λ =
−κ1κ

′
1

s∑
i=1

βi

.

Since fT ⊥ E1, we can write

(43) fT = ± (sinwE2 − coswE3) .

Thus, we have the following result:

Theorem 4.3. Let r ≥ 3. Then γ is C-parallel in the normal bundle if and
only if equations (39), (40), (41), (42) and (43) are satisfied.

iii) C-proper in the tangent bundle:
In this case, Proposition 2.1 gives us

3κ1κ
′
1T +

(
κ3

1 + κ1κ
2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3 − κ1κ2κ3E4 = λ

s∑
i=1

ξi.

If we apply T , we directly have κ1 =constant. Then the equation reduces to

κ1

(
κ2

1 + κ2
2

)
E2 − κ1κ

′
2E3 − κ1κ2κ3E4 = λ

s∑
i=1

ξi.

Applying E2, we get

κ2
1

(
κ2

1 + κ2
2

)
= −λ

s∑
i=1

βi.

Now, we will consider three subcases r = 2, r = 3 and r ≥ 4:
a) r = 2.
In this case, we have

(44) κ3
1E2 = λ

s∑
i=1

ξi.

If we apply ξj , we find

κ3
1ηj (E2) = λ,∀j.

If we denote

β1 = β2 = · · · = βs = β,
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we get

λ = −sβ3 = constant.

If we differentiate (44), it is easy to see that

s∑
i=1

αi = 0.

As a result, we have

κ1 = ∓
√
sβ = constant,

i.e., γ is a circle. Hence, we obtain the following theorem:

Theorem 4.4. Let r = 2. Then γ is C-proper in the tangent bundle if and
only if it is a circle with

κ1 = ∓
√
sβ = constant

and the Frenet frame field {
T,
±1√
s

s∑
i=1

ξi

}
.

In this case, β1 = β2 = · · · = βs = β, λ = −sβ3 = constant and
s∑
i=1

αi = 0.

b) r = 3.
In this case, from Proposition 2.1, we can see that

κ1

(
κ2

1 + κ2
2

)
E2 − κ1κ

′
2E3 = λ

s∑
i=1

ξi.

So,
s∑
i=1

ξi ∈ sp {E2, E3}. It can be written as

(45)

s∑
i=1

ξi =
√
s (coswE2 + sinwE3)

for a smooth function w = w(t). If we differentiate this equation and apply T ,
we find

(46)

s∑
i=1

βi = −
√
sκ1 cosw,

and

(47) κ2 = ± 1√
s

s∑
i=1

αi − w′.

We also have

(48) fT = ± (sinwE2 − coswE3)
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and

(49) λ =
−κ2

1

(
κ2

1 + κ2
2

)
s∑
i=1

βi

.

To sum up, we can state:

Theorem 4.5. Let r = 3. Then γ is C-proper in the tangent bundle if and
only if equations (45), (46), (47), (48) and (49) are satisfied.

c) r ≥ 4.

In this case,
s∑
i=1

ξi ∈ sp {E2, E3, E4}, consequently, fT ∈ sp {E2, E3, E4, E5} .

Let us write

(50)

s∑
i=1

ξi =
√
s (coswE2 + sinw cosϕE3 + sinw sinϕE4)

for some smooth functions w = w(t), ϕ = ϕ(t). As a result, the curve must
satisfy

κ1 = constant,
s∑
i=1

βi = −
√
sκ1 cosw,

λ
√
s cosw = κ2

1

(
κ2

1 + κ2
2

)
,

λ
√
s sinw cosϕ = −κ1κ

′
2,

λ
√
s sinw sinϕ = −κ1κ2κ3.

Differentiating (50), we also have

κ4 =

−
(

s∑
i=1

αi

)
.g (fT,E5)

sinw sinϕ
.

Finally, we have the following theorem:

Theorem 4.6. Let r ≥ 4. Then γ is C-proper in the tangent bundle if and
only if it satisfies the last six equations.

iv) C-proper in the normal bundle:
From Proposition 2.1, we get(

κ1κ
2
2 − κ′′1

)
E2 − (2κ′1κ2 + κ1κ

′
2)E3 − κ1κ2κ3E4 = λ

s∑
i=1

ξi.

In this case, again
s∑
i=1

ξi∈ sp {E2} ,
s∑
i=1

ξi∈ sp {E2, E3} or
s∑
i=1

ξi∈ sp {E2, E3, E4}

depending on the osculating order r. We can follow the above procedure to get
results for r = 2 and r = 3. The case r ≥ 4 is similar to case iii) c) with minor
changes in equations.
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Remark. For sake of shortness, αi |γ and βi |γ are written as αi and βi where
possible. This means the equations are not necessarily satisfied globally. But
instead, they are satisfied along the curve γ.
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