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Abstract. A simple graph is called semi-symmetric if it is regular and

edge transitive but not vertex transitive. In this paper we prove that
there is no connected cubic semi-symmetric graph of order 12p3 for any

prime number p.

1. Introduction

In this paper all graphs are finite, undirected and simple, i.e., without loops
or multiple edges. A graph is called semi-symmetric if it is regular and edge
transitive but not vertex transitive. The class of semi-symmetric graphs was
first studied by Folkman [6], who found several infinite families of such graphs
and posed eight open problems. In [6], Folkman proved that there are no
semi-symmetric graphs of order 2p or 2p2 for any prime p. In [13] the authors
prove that there is no connected cubic semi-symmetric graph of order 2p3 for
any prime p > 3 and that for p = 3 the Gray graph (see [1]) is the only
connected cubic semi-symmetric graph of order 2p3. Also in [5] it is proved
that a connected cubic semi-symmetric graph of order 6p3 exists if and only if
p − 1 is divisible by 3. The classification of connected cubic semi-symmetric
graphs of order 20p, any prime p, is achieved in [15]. Also the authors of [4]
prove that for any prime p other than 17, there is no connected cubic semi-
symmetric graphs of order 34p3.

In this paper we consider graphs of order 12p3. We prove that there is no
connected cubic semi-symmetric graph of order 12p3 for all primes p.

2. Preliminaries

In this paper, the cardinality of a finite set A is denoted by |A|. The alter-
nating group of degree n and the cyclic group of order n are denoted by An and
Zn, respectively. Other notations about finite simple groups are standard. If
G is a group and H ≤ G, then Aut(G), G′, Z(G), CG(H) and NG(H) denote,
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respectively, the group of automorphisms of G, the commutator subgroup of
G, the center of G, the centralizer and the normalizer of H in G. We also write
H Ec G to denote H is a characteristic subgroup of G. If H Ec K E G, then
H E G. For a prime p dividing the order of finite G, Op(G) will denote the
largest normal p-subgroup of G. It is easy to verify that Op(G)Ec G. A func-
tion f acts on its argument from the left, i.e., we write f(x). The composition
fg of two functions f and g is defined as (fg)(x) = f(g(x)). For a group G and
a nonempty set Ω, an action of G on Ω is a function (g, ω)→ g.ω from G× Ω
to Ω, where 1.ω = ω and g.(h.ω) = (gh).ω for every g, h ∈ G and every ω ∈ Ω.
We write gω instead of g.ω, if there is no fear of ambiguity. For ω ∈ Ω, the
stabilizer of ω in G is defined as Gω = {g ∈ G : gω = ω}. The action is called
semiregular if the stabilizer of each element in Ω is trivial; it is called regular
if it is semiregular and transitive.

Let Γ be a graph. For two vertices u and v, we write u ∼ v to denote u
is adjacent to v. If u ∼ v, then each of the ordered pairs (u, v) and (v, u) is
called an arc. The set of all vertices adjacent to u is denoted by Γ(u). The
degree or valency of a vertex u is |Γ(u)|. The graph Γ is called regular if all
of its vertices have the same valency. The vertex set, the edge set, the arc set
and the set of all automorphisms of Γ are denoted by V (Γ), E(Γ), Arc(Γ) and
Aut(Γ), respectively. If Γ is a graph and N E Aut (Γ), then ΓN will denote
a simple undirected graph whose vertices are the orbits of N in its action on
V (Γ), and where two vertices Nu and Nv are adjacent if and only if u ∼ nv in
Γ for some n ∈ N .

Let Γc and Γ be two graphs. Then Γc is said to be a covering graph for Γ
if there is a surjection map f : V (Γc)→ V (Γ) which preserves adjacency and
for each u ∈ V (Γc), the restricted function f |Γc(u) : Γc (u)→ Γ (f (u)) is a one
to one correspondence. The function f is called a covering projection. Clearly,
if Γ is bipartite, then so is Γc. For each u ∈ V (Γ), the fibre on u is defined as
fibu = f−1 (u). The following important set is a subgroup of Aut (Γc) and is
called the group of covering transformations for f :

CT (f) = {σ ∈ Aut (Γc) | ∀u ∈ V (Γ) , σ (fibu) = fibu}.

It is known that K = CT (f) acts semiregularly on each fibre [11]. If this
action is regular, then Γc is said to be a regular K-cover of Γ.

Let X ≤ Aut (Γ). Then Γ is said to be X-vertex transitive, X-edge transitive
or X-arc transitive if X acts transitively on V (Γ), E(Γ) or Arc(Γ), respectively.
The graph Γ is called X-semi-symmetric if it is regular and X-edge transitive
but not X-vertex transitive. Also Γ is called X-symmetric if it is X-vertex
transitive and X-arc transitive. For X = Aut(Γ), we omit X and simply talk
about Γ being edge transitive, vertex transitive, symmetric or semi-symmetric.

An X-edge transitive but not X-vertex transitive graph is necessarily bi-
partite, where the two parties are the orbits of the action of X on V (Γ). If
Γ is regular, then the two partite sets have equal cardinality. So an X-semi-
symmetric graph is bipartite such that X is transitive on each partite but X
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carries no vertex from one partite set to the other. A census of all connected
semi-symmetric cubic graphs of orders up to 768 is given in [3].

Any minimal normal subgroup of a finite group is the internal direct product
of isomorphic copies of a simple group.

A finite simple group G is called a Kn-group if its order has exactly n distinct
prime divisors, where n ∈ N. The following result determines all simple K3-
groups [9].

Theorem 2.1. If G is a simple K3-group, then G is one of the following
groups: A5, A6, L2(7), L2(23), L2(17), L3(3), U3(3), U4(2).

Theorem 2.2 ([16]). If H is a subgroup of a group G, then CG(H)ENG(H)
and NG(H)/CG(H) is isomorphic to a subgroup of Aut(H).

Theorem 2.3 ([14]). Let G be a finite group and p be a prime. If G has an
abelian Sylow p-subgroup, then p does not divide |G′ ∩ Z(G)|.

An immediate consequence of the following theorem of Burnside is that the
order of every nonabelian simple group is divisible by at least 3 distinct primes.

Theorem 2.4 ([16]). For any two distinct primes p and q and any two non-
negative integers a and b, every finite group of order paqb is solvable.

The following important theorem limits the order of vertex stabilizers in a
cubic semi-symmetric graph.

Theorem 2.5 ([8]). If Γ is a connected cubic X-semi-symmetric graph, then
for each vertex u, the order of the stabilizer Xu is of the form 2r · 3 for some
0 ≤ r ≤ 7.

Proposition 2.6 ([18]). Let Γ be a connected cubic X-semi-symmetric graph
for some X ≤ Aut(Γ) and let N EX. If |X/N | is not divisible by 3, then Γ is
also N -semi-symmetric.

Theorem 2.7 ([12]). Let Γ be a connected cubic X-semi-symmetric graph. Let
{U,W} be a bipartition for Γ and assume N EX. If the actions of N on both
U and W are intransitive, then N acts semiregularly on both U and W , ΓN is
X/N -semi-symmetric, and Γ is a regular N -covering of ΓN .

For every normal subgroup N E X either N is transitive on at least one
partite set or it is intransitive on both partite sets. In the former case, the
order of N is divisible by |U | = |W |. In the latter case, according to Theorem
2.7, the induced action of N on both U and W is semiregular and hence the
order of N divides |U | = |W |. So we have the following handy corollary to
Theorem 2.7.

Corollary 2.8. If Γ is a connected cubic X-semi-symmetric graph with {U,W}
as a bipartition and N EX, then either |N | divides |U | or |U | divides |N |.
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3. Main results

In this section, our goal is to prove the following important result:

Theorem 3.1. Let p be an arbitrary prime number. Then there is no connected
cubic semi-symmetric graph of order 12p3.

This theorem may be stated as follow: If there is a connected cubic edge
transitive graph of order 12p3, where p is prime, then it will also be vertex
transitive.

In order to prove Theorem 3.1, we need few lemmas that we now state and
prove.

Lemma 3.2. For each prime p > 3, the group GL2(p) does not have a subgroup
isomorphic to L2(p).

Proof. Suppose on the contrary that L2(p) ∼= K ≤ GL2(p). As SL2(p) E
GL2(p), we have K ∩ SL2(p) E K and so K ∩ SL2(p) = 1 or K since K is
simple. If K ∩ SL2(p) = 1, then SL2(p)K is a subgroup of GL2(p) of order
|SL2(p)| · |L2(p)|. But this order is divisible by p2 whereas |GL2(p)| is not
divisible by p2. Therefore K ∩ SL2(p) = K which implies K ≤ SL2(p) and

then KESL2(p) since |K| = |SL2(p)|
2 . Take Z to be the center of SL2(p). Then

K/(K ∩ Z) ∼= KZ/Z E SL2(p)/Z
∼= K.

Again because K is simple, this implies K/(K∩Z) = 1 or |K/(K∩Z)| = |K|.
In the former case, K∩Z = K and so K ≤ Z which is impossible. In the latter
case, K∩Z = 1 and so KZ is a subgroup of SL2(p) of order |K|·|Z| = |SL2(p)|,
implying that SL2(p) = KZ. Now we get SL2(p)′ = (KZ)′ = K ′ = K. By
using the well-known fact that SL2(q)′ = SL2(q) for q > 3 [10], we obtain
K = SL2(p), a contradiction to K ∼= L2(p). �

Lemma 3.3. Suppose Γ is a semi-symmetric cubic graph of order 12p3, where
p > 7 is a prime. Let A = Aut(Γ). For 0 ≤ i ≤ 2 if |Op(A)| = pi, then A does
not have a normal subgroup of order 6pi.

Proof. Let {U,W} be the bipartition for Γ. Then |U | = |W | = 6p3. Also if
u ∈ U is an arbitrary vertex, according to Theorem 2.5, |Au| = 2r · 3 for some
0 ≤ r ≤ 7. Due to transitivity of A on U , the equality [A : Au] = |U | holds
which yields |A| = 2r+1 · 32 · p3.

Let M be a normal subgroup of A of order 6pi for 0 ≤ i ≤ 2. Then M
is intransitive on the partite sets and according to Theorem 2.7 the quotient
graph ΓM is A/M -semi-symmetric with a bipartition {UM ,WM}. We prove
that the combination (|Op(A)|, |M |) = (pi, 6pi) leads to contradiction.

First let i = 0 or 1, and suppose to the contrary, that |Op(A)| = pi and
|M | = 6pi. Then |UM | = |WM | = p3−i and |A/M | = 2r · 3 · p3−i. Let K/M
be a minimal normal subgroup of A/M . If K/M is non-solvable, it must be a
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simple group and by Corollary 2.8 its order is of the form 2j · 3 · p3−i for some
j. But there is no simple K3-group of such order since 3 − i ≥ 2. Therefore
K/M is solvable and hence elementary abelian. Whether it is intransitive or
transitive on the partite sets, its order must be pk for some 1 ≤ k ≤ 3 − i.
Therefore |K| = 6pi+k. The Sylow p-subgroup of K is normal in K. So it is
characteristic in K and hence normal in A, contradicting the assumption that
|Op(A)| = pi.

Now let i = 2 and suppose |Op(A)| = p2 and |M | = 6p2. In this case
|UM | = |WM | = p and |A/M | = 2r · 3 · p. Again let K/M be a minimal
normal subgroup of A/M . If K/M is non-solvable, it must be a simple group
of order 2j · 3 · p for some j and p > 7. But there is no such simple K3-
group (Theorem 2.1). On the other hand if K/M is solvable, then by virtue of
Corollary 2.8 and the fact that the power of p in |A/M | is just 1, we conclude
that |K/M | = p and hence |K| = 6p3. Now if P is a Sylow p-subgroup of K,
then P EK. So P EcKEA which implies P EA contradicting the assumption
that |Op(A)| = p2. �

Proof of Theorem 3.1. For p = 2, 3 there is no connected cubic semi-symmetric
graph of order 12p3 according to [3]. Also for p = 5, 7 the order of the graph
is respectively 1500 and 4116 which are less than 10000 and we may use the
recent result obtained in [2] to conclude that there is no connected cubic semi-
symmetric graph of order 12p3. So let p be an arbitrary prime greater than
7. We show that there is no connected cubic semi-symmetric graph of order
12p3, by proving that the existence of such a graph leads to a contradiction.
So assume Γ is a connected cubic semi-symmetric graph of order 12p3 with
a bipartition {U,W}. Each of the two partite sets has cardinality 6p3 and if
A = Aut(Γ), then |A| = 2r+1 · 32 · p3 for some 0 ≤ r ≤ 7. Let N ∼= T k be a
minimal normal subgroup of A, where T is simple.

If T is nonabelian, then it is a simple K3-group. According to Corollary 2.8
either |N | divides |U | = 6p3 or 6p3 divides |N |. In the former case |T | is not
divisible by 4 which is impossible as the order of every simple K3-group, all
listed in Theorem 2.1 is divisible by 4 (in general, the order of every nonabelian
simple group is divisible by 4). So 6p3 must divide |N |. Since the power of 3
in |N | is at most 2, k can only be 1 or 2. In both cases since p3 divides |N |,
we conclude that p2 must divide |T |. But for p > 3, the square of p does not
divide the order of any simple K3-group which are all listed in Theorem 2.1.

Therefore N should be elementary abelian and hence by Corollary 2.8 we
have that |N | divides 6p3. As a result, N ∼= Z2, Z3 or Zi

p for some 1 ≤ i ≤ 3.
In the following, M will always denote the normal subgroup Op(A)EA. Since

|M | ≤ p3, M is always intransitive on both U and W and hence according to
Proposition 2.7, ΓM is a connected cubic A/M -semi-symmetric graph with the
bipartition {UM ,WM}. There are four possibilities for |M |. We will show that
all the possibilities result in contradiction.
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Case 1. M = 1. In this case, the minimal normal subgroup of A is N ∼= Z2

or Z3. The graph ΓN is A/N -semi-symmetric with a bipartition {UN ,WN}.
Take K/N ∼= Tm to be a minimal normal subgroup of A/N where T is simple.

If N ∼= Z2, then |UN | = |WN | = 3p3 and |A/N | = 2r · 32 · p3. If K/N is
non-solvable, then by Theorem 2.4 and Corollary 2.8 its order must be divisible
by 3p3. So T is a simple K3-group and by considering the power of 3, it follows
that m = 1 or 2. Therefore the power of p > 3 in |T | must be at least 2. But
there is no such simple K3-group. On the other hand if K/N is elementary
abelian, then by Corollary 2.8 its order divides 3p3 and hence K/N ∼= Z3 or Zi

p

for 1 ≤ i ≤ 3. If K/N ∼= Z3, then K is a normal subgroup of A of order 6 which
is not possible according to Lemma 3.3. On the other hand if K/N ∼= Zi

p, then

K is a normal subgroup of A of order 6pi. Now K should have a normal Sylow
p-subgroup which would also be normal in A, contradicting the assumption
that M = 1.

Now suppose N ∼= Z3. Then |UN | = |WN | = 2p3 and |A/N | = 2r+1 ·3 ·p3. In
this case if K/N is non-solvable, then m = 1 and N ∼= T is a simple K3-group.
Again since |N | cannot divide |UN | = 2p3, the order of N must be divisible by
2p3 which is not possible for any K3-group. So K/N is elementary abelian and
its order divides 2p3. This subcase leads to a contradiction exactly as in the
previous case where we had N ∼= Z2.

Case 2. |M | = p. In this case |UM | = |WM | = 6p2 and |A/M | = 2r+1 ·
32 · p2. Take L/M to be a minimal normal subgroup of A/M . We consider
two cases of solvability and non-solvability for L/M and show that both lead
to contradictions.

(a) If L/M ∼= Tm is non-solvable, then T would be a simple K3-group and
hence |T | would be divisible by 4. Hence |L/M | would not divide 6p2. So
by Corollary 2.8 the order of L/M is divisible by 6p2. Now m cannot equal
1 since the order of any simple K3-group is not divisible by the square of a
prime greater than 3. Therefore m = 2 and since |T |2 must divide |A/M |, it
follows that the power of 3 in |T | equals 1. So according to Theorem 2.1 we
have T ∼= A5 or L2(7). But this is not possible as we have assumed p > 7.

(b) Now assume L/M is solvable and hence elementary abelian. By Corollary
2.8 the order of L/M should divide |UM | = 6p2 and so L/M ∼= Z2, Z3 or Zi

p

for some 1 ≤ i ≤ 2. The isomorphism L/M ∼= Zi
p results in |L| = pi+1 which

contradicts the assumption that |M | = p. We discuss the other two cases.
First suppose L/M ∼= Z2. Then |L| = 2p. The normal subgroup L E A is
intransitive on both U and W due to its order and so we can consider the
graph ΓL which is connected cubic A/L-semi-symmetric (Theorem 2.7) with
the bipartition {UL,WL}, where |UL| = |WL| = 3p2 with |A/L| = 2r · 32 · p2.

Let K/L be a minimal normal subgroup of A/L. If K/L is solvable, then it
follows from Corollary 2.8 that K/L ∼= Z3 or Zj

p for j = 1 or 2. If K/L ∼= Z3,
then |K| = 6p. But according to Lemma 3.3, A cannot have a normal subgroup
of order 6p. On the other hand if K/L ∼= Zj

p, then |K| = 2pj+1 and a Sylow
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p-subgroup of K would be normal in K and hence, also normal in A, which
contradicts the assumption on |M |. Now if K/L ∼= Tm is non-solvable, then it
follows from Corollary 2.8 and Theorem 2.4 that 3p2 divides |K/L|. So T is a
simple {2, 3, p}-group and m = 1 or 2. Since the square of any prime greater
than 3 does not divide the order of any simple K3-group, m has to be 2. It
follows that the power of 3 in |T | is 1, and hence T ∼= A5 or L2(7). Therefore
p must be 5 or 7 which do not satisfy our assumption on p.

Case 3. |M | = p2. In this case |UM | = |WM | = 6p and |A/M | = 2r+1 ·32 ·p.
Again take L/M to be a minimal normal subgroup of A/M .

(a) If L/M ∼= Tm is non-solvable, then T is a simple K3-group. Since the
power of 3 in |T | is at most 2, according to Theorem 2.1 we must have T ∼= A5,
A6, L2(7), L2(8) or L2(17). Since we have assumed p > 7, it follows that
T ∼= L2(17) and hence p = 17. As 32 divides the order of L2(17), m should
equal 1 and so L/M ∼= L2(17). Now 3 does not divide the order of A/L ∼=
(A/M)/(L/M) and therefore by Proposition 2.6, Γ is L-semi-symmetric. Since
L/M is nonabelian simple, M is a maximal normal subgroup of L. By Theorem
2.2 we have CL(M)ENL(M) = L. Also M of order 172 is abelian and therefore
M ≤ CL(M)E L from which it follows that CL(M) = M or L.

If CL(M) = M , then according to Theorem 2.2, we have L/M ≤ Aut(M).
There are two possible cases for M . Either M ∼= Z172 or M ∼= Z17 × Z17. In
the former case Aut(M) is cyclic of order ϕ(172) and does not have a subgroup
isomorphic to L2(17). In the latter case Aut(M) ∼= GL2(17). But according to
Lemma 3.2, GL2(17) does not have a subgroup isomorphic to L2(17) either.

On the other hand if CL(M) = L, then M ≤ Z(L). It follows that Z(L) =
M or L since M is a maximal normal subgroup of L. As L is not abelian,
the equality Z(L) = L is not possible and hence Z(L) = M . Since L/M is
nonabelian simple, L′M/M = (L/M)′ = L/M and so L′M = L from which it

follows that |L| = |L′|·|M |
|L′∩M | . The order of L2(17) ∼= L/M and hence the order of

L is divisible by 24. Therefore 24 divides |L′| · |M | and so divides |L′|. So |L′|
does not divide |U | = 6 · 173. Consequently according to Corollary 2.8 we have
6 · 173 divides |L′|. In the rest of this paragraph we write p instead of 17. This
will help better understand the discussion. Since the power of p in |A| is 3, it

follows from the equality |L| = |L′| · |M |
|L′∩M | that |M |

|L′∩M | is not divisible by p.

As M is a p-group, it follows that L′ ∩M = M and hence M ≤ L′. According
to Sylow theorems M is contained in a Sylow p-subgroup of L. Assume M ≤ P
where P is a Sylow p-subgroup of L. Each element of M = Z(L) commutes
with every element of P . Therefore M ≤ Z(P ) and hence |Z(P )| ≥ p2. We
claim P is abelian. In fact if P is not abelian, then p2 ≤ |Z(P )| < |P | ≤ p3

from which it follows that |P | = p3 and |Z(P )| = p2. Now the quotient P/Z(P )
is of order p and so cyclic. But it is a well-known fact that for a nonabelian
group G, the quotient G/Z(G) cannot be cyclic. Therefore P is abelian and so
according to Theorem 2.3 the order of L′ ∩ Z(L) = M is not divisible by p, a
contradiction.
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(b) Now assume L/M is solvable and hence elementary abelian. By Corollary
2.8 the order of L/M should divide |UM | = 6p and so L/M ∼= Z2, Z3 or
Zp. Certainly L/M ∼= Zp results in |L| = p3 which contradicts the current
assumption on |M |. We now discuss the two cases L/M ∼= Z2, Z3.

(b1) If L/M ∼= Z2, then |L| = 2p2. The normal subgroup LEA is intransitive
on the two partite sets of Γ and so by Theorem 2.7 the graph ΓL is A/L-semi-
symmetric with the bipartition {UL,WL} where |UL| = |WL| = 3p and where
|A/L| = 2r · 32 · p. Let K/L ∼= Tm be a minimal normal subgroup of A/L. If
it is solvable and hence elementary abelian, its order should divide 3p and so
K/L ∼= Z3 or Zp. Like before K/L ∼= Zp will contradict the assumption that
|M | = p2, and also K/L ∼= Z3 is impossible according to Lemma 3.3. Now
if K/L is not solvable, then T is a simple K3-group where the power of 3 in
|T | is only 1 or 2. Therefore according to Theorem 2.1 we have T ∼= A5, A6,
L2(7), L2(8) or L2(17). Since p > 7, the only possibility will be T ∼= L2(17)
and hence p = 17. The order of L2(17) is divisible by 32 and hence m = 1.
We conclude that G = K/L ∼= L2(17). Now 3 does not divide the order of
(A/L)/G and therefore by Proposition 2.6, ΓL is G-semi-symmetric. It follows
that G is transitive on UL with 3 ·17 points. For a vertex u ∈ UL, the stabilizer

Gu is of order |Gu| = |L2(17)|
3·17 = 24 · 3. For every prime power q, subgroups of

L2(q) have been completely classified (see Chapter 3 of [16]). It can be verified
that the group L2(17) has no subgroup of order 24 · 3. This shows that the
assumption of non-solvability of K/L leads to a contradiction.

(b2) If L/M ∼= Z3, then |L| = 3p2. Like before the graph ΓL is A/L-semi-
symmetric with the bipartition {UL,WL}, where in this case |UL| = |WL| = 2p
and |A/L| = 2r+1 ·3 ·p. Let K/L ∼= Tm be a minimal normal subgroup of A/L.
There are two cases. If K/L is solvable and hence elementary abelian, it follows
from Corollary 2.8 that K/L ∼= Z2 or Zp. Again K/L ∼= Zp will contradict the
assumption on |M | and K/L ∼= Z2 is not possible by Lemma 3.3. On the other
hand if K/L is not solvable, then T is a simple K3-group where the power of 3
in |T | is only 1. So according to Theorem 2.1, T ∼= A5 or L2(7) which are not
possible since we have assumed p > 7.

So the case |M | = p2 is impossible.
Case 4. |M | = p3. In this case according to Theorem 2.7, Γ is a regular

M -covering of ΓM which is itself cubic A/M -semi-symmetric of order 12. So
ΓM is A/M -edge transitive and hence edge transitive. Now if ΓM is not vertex
transitive, then it must be semi-symmetric, but there is no semi-symmetric
graph of order 12 according to Theorem 5 of [6]. On the other hand if ΓM

is vertex transitive, then it will be symmetric since according to [17] a cubic
vertex and edge transitive graph is necessarily symmetric. But according to [7]
there is no symmetric cubic graphs of order 12.

As every assumption on |M | leads to contradictions, we conclude that there
is no connected semi-symmetric cubic graph of order 12p3 for any prime number
p. �



SEMI-SYMMETRIC CUBIC GRAPH OF ORDER 12p3 211

Acknowledgement. The authors would like to thank the anonymous referees
for their helpful comments.

References

[1] I. Z. Bouwer, An edge but not vertex transitive cubic graph, Canad. Math. Bull. 11

(1968), 533–535. https://doi.org/10.4153/CMB-1968-063-0

[2] M. Conder, Summary of all semi-symmetric cubic graphs on up to 10000 vertices,
https://www.math.auckland.ac.nz/∼conder/SemisymmCubic10000.txt.
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