SEMI-SYMMETRIC CUBIC GRAPH OF ORDER $12 p^{3}$

Pooriya Majd Amoli, Mohammad Reza Darafsheh, and Abolfazl Tehranian

Abstract

A simple graph is called semi-symmetric if it is regular and edge transitive but not vertex transitive. In this paper we prove that there is no connected cubic semi-symmetric graph of order $12 p^{3}$ for any prime number p.

1. Introduction

In this paper all graphs are finite, undirected and simple, i.e., without loops or multiple edges. A graph is called semi-symmetric if it is regular and edge transitive but not vertex transitive. The class of semi-symmetric graphs was first studied by Folkman [6], who found several infinite families of such graphs and posed eight open problems. In [6], Folkman proved that there are no semi-symmetric graphs of order $2 p$ or $2 p^{2}$ for any prime p. In [13] the authors prove that there is no connected cubic semi-symmetric graph of order $2 p^{3}$ for any prime $p>3$ and that for $p=3$ the Gray graph (see [1]) is the only connected cubic semi-symmetric graph of order $2 p^{3}$. Also in [5] it is proved that a connected cubic semi-symmetric graph of order $6 p^{3}$ exists if and only if $p-1$ is divisible by 3 . The classification of connected cubic semi-symmetric graphs of order $20 p$, any prime p, is achieved in [15]. Also the authors of [4] prove that for any prime p other than 17 , there is no connected cubic semisymmetric graphs of order $34 p^{3}$.

In this paper we consider graphs of order $12 p^{3}$. We prove that there is no connected cubic semi-symmetric graph of order $12 p^{3}$ for all primes p.

2. Preliminaries

In this paper, the cardinality of a finite set A is denoted by $|A|$. The alternating group of degree n and the cyclic group of order n are denoted by \mathbb{A}_{n} and \mathbb{Z}_{n}, respectively. Other notations about finite simple groups are standard. If G is a group and $H \leq G$, then $\operatorname{Aut}(G), G^{\prime}, Z(G), C_{G}(H)$ and $N_{G}(H)$ denote,

Received March 22, 2021; Revised June 8, 2021; Accepted June 29, 2021.
2010 Mathematics Subject Classification. 05E18, 20D60, 05C25, $20 B 25$.
Key words and phrases. Edge-transitive graph, vertex-transitive graph, semi-symmetric graph, order of a graph, classification of cubic semi-symmetric graphs.
respectively, the group of automorphisms of G, the commutator subgroup of G, the center of G, the centralizer and the normalizer of H in G. We also write $H \unlhd^{c} G$ to denote H is a characteristic subgroup of G. If $H \unlhd^{c} K \unlhd G$, then $H \unlhd G$. For a prime p dividing the order of finite $G, O_{p}(G)$ will denote the largest normal p-subgroup of G. It is easy to verify that $O_{p}(G) \unlhd^{c} G$. A function f acts on its argument from the left, i.e., we write $f(x)$. The composition $f g$ of two functions f and g is defined as $(f g)(x)=f(g(x))$. For a group G and a nonempty set Ω, an action of G on Ω is a function $(g, \omega) \rightarrow g . \omega$ from $G \times \Omega$ to Ω, where $1 . \omega=\omega$ and $g .(h \cdot \omega)=(g h) . \omega$ for every $g, h \in G$ and every $\omega \in \Omega$. We write $g \omega$ instead of $g \cdot \omega$, if there is no fear of ambiguity. For $\omega \in \Omega$, the stabilizer of ω in G is defined as $G_{\omega}=\{g \in G: g \omega=\omega\}$. The action is called semiregular if the stabilizer of each element in Ω is trivial; it is called regular if it is semiregular and transitive.

Let Γ be a graph. For two vertices u and v, we write $u \sim v$ to denote u is adjacent to v. If $u \sim v$, then each of the ordered pairs (u, v) and (v, u) is called an arc. The set of all vertices adjacent to u is denoted by $\Gamma(u)$. The degree or valency of a vertex u is $|\Gamma(u)|$. The graph Γ is called regular if all of its vertices have the same valency. The vertex set, the edge set, the arc set and the set of all automorphisms of Γ are denoted by $\operatorname{V}(\Gamma), E(\Gamma), \operatorname{Arc}(\Gamma)$ and $\operatorname{Aut}(\Gamma)$, respectively. If Γ is a graph and $N \unlhd A u t(\Gamma)$, then Γ_{N} will denote a simple undirected graph whose vertices are the orbits of N in its action on $V(\Gamma)$, and where two vertices $N u$ and $N v$ are adjacent if and only if $u \sim n v$ in Γ for some $n \in N$.

Let Γ_{c} and Γ be two graphs. Then Γ_{c} is said to be a covering graph for Γ if there is a surjection map $f: V\left(\Gamma_{c}\right) \rightarrow V(\Gamma)$ which preserves adjacency and for each $u \in V\left(\Gamma_{c}\right)$, the restricted function $\left.f\right|_{\Gamma_{c}(u)}: \Gamma_{c}(u) \rightarrow \Gamma(f(u))$ is a one to one correspondence. The function f is called a covering projection. Clearly, if Γ is bipartite, then so is Γ_{c}. For each $u \in V(\Gamma)$, the fibre on u is defined as $f i b_{u}=f^{-1}(u)$. The following important set is a subgroup of $A u t\left(\Gamma_{c}\right)$ and is called the group of covering transformations for f :

$$
C T(f)=\left\{\sigma \in \operatorname{Aut}\left(\Gamma_{c}\right) \mid \forall u \in V(\Gamma), \sigma\left(f i b_{u}\right)=f i b_{u}\right\}
$$

It is known that $K=C T(f)$ acts semiregularly on each fibre [11]. If this action is regular, then Γ_{c} is said to be a regular K-cover of Γ.

Let $X \leq A u t(\Gamma)$. Then Γ is said to be X-vertex transitive, X-edge transitive or X-arc transitive if X acts transitively on $V(\Gamma), E(\Gamma)$ or $\operatorname{Arc}(\Gamma)$, respectively. The graph Γ is called X-semi-symmetric if it is regular and X-edge transitive but not X-vertex transitive. Also Γ is called X-symmetric if it is X-vertex transitive and X-arc transitive. For $X=A u t(\Gamma)$, we omit X and simply talk about Γ being edge transitive, vertex transitive, symmetric or semi-symmetric.

An X-edge transitive but not X-vertex transitive graph is necessarily bipartite, where the two parties are the orbits of the action of X on $V(\Gamma)$. If Γ is regular, then the two partite sets have equal cardinality. So an X-semisymmetric graph is bipartite such that X is transitive on each partite but X
carries no vertex from one partite set to the other. A census of all connected semi-symmetric cubic graphs of orders up to 768 is given in [3].

Any minimal normal subgroup of a finite group is the internal direct product of isomorphic copies of a simple group.

A finite simple group G is called a K_{n}-group if its order has exactly n distinct prime divisors, where $n \in \mathbb{N}$. The following result determines all simple $K_{3^{-}}$ groups [9].

Theorem 2.1. If G is a simple K_{3}-group, then G is one of the following groups: $\mathbb{A}_{5}, \mathbb{A}_{6}, L_{2}(7), L_{2}\left(2^{3}\right), L_{2}(17), L_{3}(3), U_{3}(3), U_{4}(2)$.

Theorem 2.2 ([16]). If H is a subgroup of a group G, then $C_{G}(H) \unlhd N_{G}(H)$ and $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.

Theorem 2.3 ([14]). Let G be a finite group and p be a prime. If G has an abelian Sylow p-subgroup, then p does not divide $\left|G^{\prime} \cap Z(G)\right|$.

An immediate consequence of the following theorem of Burnside is that the order of every nonabelian simple group is divisible by at least 3 distinct primes.

Theorem 2.4 ([16]). For any two distinct primes p and q and any two nonnegative integers a and b, every finite group of order $p^{a} q^{b}$ is solvable.

The following important theorem limits the order of vertex stabilizers in a cubic semi-symmetric graph.

Theorem 2.5 ([8]). If Γ is a connected cubic X-semi-symmetric graph, then for each vertex u, the order of the stabilizer X_{u} is of the form $2^{r} \cdot 3$ for some $0 \leq r \leq 7$.

Proposition 2.6 ([18]). Let Γ be a connected cubic X-semi-symmetric graph for some $X \leq A u t(\Gamma)$ and let $N \unlhd X$. If $|X / N|$ is not divisible by 3 , then Γ is also N-semi-symmetric.

Theorem 2.7 ([12]). Let Γ be a connected cubic X-semi-symmetric graph. Let $\{U, W\}$ be a bipartition for Γ and assume $N \unlhd X$. If the actions of N on both U and W are intransitive, then N acts semiregularly on both U and W, Γ_{N} is X / N-semi-symmetric, and Γ is a regular N-covering of Γ_{N}.

For every normal subgroup $N \unlhd X$ either N is transitive on at least one partite set or it is intransitive on both partite sets. In the former case, the order of N is divisible by $|U|=|W|$. In the latter case, according to Theorem 2.7, the induced action of N on both U and W is semiregular and hence the order of N divides $|U|=|W|$. So we have the following handy corollary to Theorem 2.7.

Corollary 2.8. If Γ is a connected cubic X-semi-symmetric graph with $\{U, W\}$ as a bipartition and $N \unlhd X$, then either $|N|$ divides $|U|$ or $|U|$ divides $|N|$.

3. Main results

In this section, our goal is to prove the following important result:
Theorem 3.1. Let p be an arbitrary prime number. Then there is no connected cubic semi-symmetric graph of order $12 p^{3}$.

This theorem may be stated as follow: If there is a connected cubic edge transitive graph of order $12 p^{3}$, where p is prime, then it will also be vertex transitive.

In order to prove Theorem 3.1, we need few lemmas that we now state and prove.

Lemma 3.2. For each prime $p>3$, the group $G L_{2}(p)$ does not have a subgroup isomorphic to $L_{2}(p)$.

Proof. Suppose on the contrary that $L_{2}(p) \cong K \leq G L_{2}(p)$. As $S L_{2}(p) \unlhd$ $G L_{2}(p)$, we have $K \cap S L_{2}(p) \unlhd K$ and so $K \cap S L_{2}(p)=1$ or K since K is simple. If $K \cap S L_{2}(p)=1$, then $S L_{2}(p) K$ is a subgroup of $G L_{2}(p)$ of order $\left|S L_{2}(p)\right| \cdot\left|L_{2}(p)\right|$. But this order is divisible by p^{2} whereas $\left|G L_{2}(p)\right|$ is not divisible by p^{2}. Therefore $K \cap S L_{2}(p)=K$ which implies $K \leq S L_{2}(p)$ and then $K \unlhd S L_{2}(p)$ since $|K|=\frac{\left|S L_{2}(p)\right|}{2}$. Take Z to be the center of $S L_{2}(p)$. Then

$$
\begin{aligned}
K /(K \cap Z) & \cong K Z / Z \unlhd S L_{2}(p) / Z \\
& \cong K
\end{aligned}
$$

Again because K is simple, this implies $K /(K \cap Z)=1$ or $|K /(K \cap Z)|=|K|$. In the former case, $K \cap Z=K$ and so $K \leq Z$ which is impossible. In the latter case, $K \cap Z=1$ and so $K Z$ is a subgroup of $S L_{2}(p)$ of order $|K| \cdot|Z|=\left|S L_{2}(p)\right|$, implying that $S L_{2}(p)=K Z$. Now we get $S L_{2}(p)^{\prime}=(K Z)^{\prime}=K^{\prime}=K$. By using the well-known fact that $S L_{2}(q)^{\prime}=S L_{2}(q)$ for $q>3$ [10], we obtain $K=S L_{2}(p)$, a contradiction to $K \cong L_{2}(p)$.
Lemma 3.3. Suppose Γ is a semi-symmetric cubic graph of order $12 p^{3}$, where $p>7$ is a prime. Let $A=A u t(\Gamma)$. For $0 \leq i \leq 2$ if $\left|O_{p}(A)\right|=p^{i}$, then A does not have a normal subgroup of order $6 p^{i}$.

Proof. Let $\{U, W\}$ be the bipartition for Γ. Then $|U|=|W|=6 p^{3}$. Also if $u \in U$ is an arbitrary vertex, according to Theorem 2.5, $\left|A_{u}\right|=2^{r} \cdot 3$ for some $0 \leq r \leq 7$. Due to transitivity of A on U, the equality $\left[A: A_{u}\right]=|U|$ holds which yields $|A|=2^{r+1} \cdot 3^{2} \cdot p^{3}$.

Let M be a normal subgroup of A of order $6 p^{i}$ for $0 \leq i \leq 2$. Then M is intransitive on the partite sets and according to Theorem 2.7 the quotient graph Γ_{M} is A / M-semi-symmetric with a bipartition $\left\{U_{M}, W_{M}\right\}$. We prove that the combination $\left(\left|O_{p}(A)\right|,|M|\right)=\left(p^{i}, 6 p^{i}\right)$ leads to contradiction.

First let $i=0$ or 1 , and suppose to the contrary, that $\left|O_{p}(A)\right|=p^{i}$ and $|M|=6 p^{i}$. Then $\left|U_{M}\right|=\left|W_{M}\right|=p^{3-i}$ and $|A / M|=2^{r} \cdot 3 \cdot p^{3-i}$. Let K / M be a minimal normal subgroup of A / M. If K / M is non-solvable, it must be a
simple group and by Corollary 2.8 its order is of the form $2^{j} \cdot 3 \cdot p^{3-i}$ for some j. But there is no simple K_{3}-group of such order since $3-i \geq 2$. Therefore K / M is solvable and hence elementary abelian. Whether it is intransitive or transitive on the partite sets, its order must be p^{k} for some $1 \leq k \leq 3-i$. Therefore $|K|=6 p^{i+k}$. The Sylow p-subgroup of K is normal in K. So it is characteristic in K and hence normal in A, contradicting the assumption that $\left|O_{p}(A)\right|=p^{i}$.

Now let $i=2$ and suppose $\left|O_{p}(A)\right|=p^{2}$ and $|M|=6 p^{2}$. In this case $\left|U_{M}\right|=\left|W_{M}\right|=p$ and $|A / M|=2^{r} \cdot 3 \cdot p$. Again let K / M be a minimal normal subgroup of A / M. If K / M is non-solvable, it must be a simple group of order $2^{j} \cdot 3 \cdot p$ for some j and $p>7$. But there is no such simple K_{3} group (Theorem 2.1). On the other hand if K / M is solvable, then by virtue of Corollary 2.8 and the fact that the power of p in $|A / M|$ is just 1 , we conclude that $|K / M|=p$ and hence $|K|=6 p^{3}$. Now if P is a Sylow p-subgroup of K, then $P \unlhd K$. So $P \unlhd^{c} K \unlhd A$ which implies $P \unlhd A$ contradicting the assumption that $\left|O_{p}(A)\right|=p^{2}$.

Proof of Theorem 3.1. For $p=2,3$ there is no connected cubic semi-symmetric graph of order $12 p^{3}$ according to [3]. Also for $p=5,7$ the order of the graph is respectively 1500 and 4116 which are less than 10000 and we may use the recent result obtained in [2] to conclude that there is no connected cubic semisymmetric graph of order $12 p^{3}$. So let p be an arbitrary prime greater than 7. We show that there is no connected cubic semi-symmetric graph of order $12 p^{3}$, by proving that the existence of such a graph leads to a contradiction. So assume Γ is a connected cubic semi-symmetric graph of order $12 p^{3}$ with a bipartition $\{U, W\}$. Each of the two partite sets has cardinality $6 p^{3}$ and if $A=\operatorname{Aut}(\Gamma)$, then $|A|=2^{r+1} \cdot 3^{2} \cdot p^{3}$ for some $0 \leq r \leq 7$. Let $N \cong T^{k}$ be a minimal normal subgroup of A, where T is simple.

If T is nonabelian, then it is a simple K_{3}-group. According to Corollary 2.8 either $|N|$ divides $|U|=6 p^{3}$ or $6 p^{3}$ divides $|N|$. In the former case $|T|$ is not divisible by 4 which is impossible as the order of every simple K_{3}-group, all listed in Theorem 2.1 is divisible by 4 (in general, the order of every nonabelian simple group is divisible by 4). So $6 p^{3}$ must divide $|N|$. Since the power of 3 in $|N|$ is at most $2, k$ can only be 1 or 2 . In both cases since p^{3} divides $|N|$, we conclude that p^{2} must divide $|T|$. But for $p>3$, the square of p does not divide the order of any simple K_{3}-group which are all listed in Theorem 2.1.

Therefore N should be elementary abelian and hence by Corollary 2.8 we have that $|N|$ divides $6 p^{3}$. As a result, $N \cong \mathbb{Z}_{2}, \mathbb{Z}_{3}$ or \mathbb{Z}_{p}^{i} for some $1 \leq i \leq 3$.

In the following, M will always denote the normal subgroup $O_{p}(A) \unlhd A$. Since $|M| \leq p^{3}, M$ is always intransitive on both U and W and hence according to Proposition $2.7, \Gamma_{M}$ is a connected cubic A / M-semi-symmetric graph with the bipartition $\left\{U_{M}, W_{M}\right\}$. There are four possibilities for $|M|$. We will show that all the possibilities result in contradiction.

Case 1. $M=1$. In this case, the minimal normal subgroup of A is $N \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{3}. The graph Γ_{N} is A / N-semi-symmetric with a bipartition $\left\{U_{N}, W_{N}\right\}$. Take $K / N \cong T^{m}$ to be a minimal normal subgroup of A / N where T is simple.

If $N \cong \mathbb{Z}_{2}$, then $\left|U_{N}\right|=\left|W_{N}\right|=3 p^{3}$ and $|A / N|=2^{r} \cdot 3^{2} \cdot p^{3}$. If K / N is non-solvable, then by Theorem 2.4 and Corollary 2.8 its order must be divisible by $3 p^{3}$. So T is a simple K_{3}-group and by considering the power of 3 , it follows that $m=1$ or 2 . Therefore the power of $p>3$ in $|T|$ must be at least 2 . But there is no such simple K_{3}-group. On the other hand if K / N is elementary abelian, then by Corollary 2.8 its order divides $3 p^{3}$ and hence $K / N \cong \mathbb{Z}_{3}$ or \mathbb{Z}_{p}^{i} for $1 \leq i \leq 3$. If $K / N \cong \mathbb{Z}_{3}$, then K is a normal subgroup of A of order 6 which is not possible according to Lemma 3.3. On the other hand if $K / N \cong \mathbb{Z}_{p}^{i}$, then K is a normal subgroup of A of order $6 p^{i}$. Now K should have a normal Sylow p-subgroup which would also be normal in A, contradicting the assumption that $M=1$.

Now suppose $N \cong \mathbb{Z}_{3}$. Then $\left|U_{N}\right|=\left|W_{N}\right|=2 p^{3}$ and $|A / N|=2^{r+1} \cdot 3 \cdot p^{3}$. In this case if K / N is non-solvable, then $m=1$ and $N \cong T$ is a simple K_{3}-group. Again since $|N|$ cannot divide $\left|U_{N}\right|=2 p^{3}$, the order of N must be divisible by $2 p^{3}$ which is not possible for any K_{3}-group. So K / N is elementary abelian and its order divides $2 p^{3}$. This subcase leads to a contradiction exactly as in the previous case where we had $N \cong \mathbb{Z}_{2}$.

Case 2. $|M|=p$. In this case $\left|U_{M}\right|=\left|W_{M}\right|=6 p^{2}$ and $|A / M|=2^{r+1}$. $3^{2} \cdot p^{2}$. Take L / M to be a minimal normal subgroup of A / M. We consider two cases of solvability and non-solvability for L / M and show that both lead to contradictions.
(a) If $L / M \cong T^{m}$ is non-solvable, then T would be a simple K_{3}-group and hence $|T|$ would be divisible by 4 . Hence $|L / M|$ would not divide $6 p^{2}$. So by Corollary 2.8 the order of L / M is divisible by $6 p^{2}$. Now m cannot equal 1 since the order of any simple K_{3}-group is not divisible by the square of a prime greater than 3 . Therefore $m=2$ and since $|T|^{2}$ must divide $|A / M|$, it follows that the power of 3 in $|T|$ equals 1 . So according to Theorem 2.1 we have $T \cong \mathbb{A}_{5}$ or $L_{2}(7)$. But this is not possible as we have assumed $p>7$.
(b) Now assume L / M is solvable and hence elementary abelian. By Corollary 2.8 the order of L / M should divide $\left|U_{M}\right|=6 p^{2}$ and so $L / M \cong \mathbb{Z}_{2}, \mathbb{Z}_{3}$ or \mathbb{Z}_{p}^{i} for some $1 \leq i \leq 2$. The isomorphism $L / M \cong \mathbb{Z}_{p}^{i}$ results in $|L|=p^{i+1}$ which contradicts the assumption that $|M|=p$. We discuss the other two cases. First suppose $L / M \cong \mathbb{Z}_{2}$. Then $|L|=2 p$. The normal subgroup $L \unlhd A$ is intransitive on both U and W due to its order and so we can consider the graph Γ_{L} which is connected cubic A / L-semi-symmetric (Theorem 2.7) with the bipartition $\left\{U_{L}, W_{L}\right\}$, where $\left|U_{L}\right|=\left|W_{L}\right|=3 p^{2}$ with $|A / L|=2^{r} \cdot 3^{2} \cdot p^{2}$.

Let K / L be a minimal normal subgroup of A / L. If K / L is solvable, then it follows from Corollary 2.8 that $K / L \cong \mathbb{Z}_{3}$ or \mathbb{Z}_{p}^{j} for $j=1$ or 2 . If $K / L \cong \mathbb{Z}_{3}$, then $|K|=6 p$. But according to Lemma 3.3, A cannot have a normal subgroup of order $6 p$. On the other hand if $K / L \cong \mathbb{Z}_{p}^{j}$, then $|K|=2 p^{j+1}$ and a Sylow
p-subgroup of K would be normal in K and hence, also normal in A, which contradicts the assumption on $|M|$. Now if $K / L \cong T^{m}$ is non-solvable, then it follows from Corollary 2.8 and Theorem 2.4 that $3 p^{2}$ divides $|K / L|$. So T is a simple $\{2,3, p\}$-group and $m=1$ or 2 . Since the square of any prime greater than 3 does not divide the order of any simple K_{3}-group, m has to be 2 . It follows that the power of 3 in $|T|$ is 1 , and hence $T \cong \mathbb{A}_{5}$ or $L_{2}(7)$. Therefore p must be 5 or 7 which do not satisfy our assumption on p.

Case 3. $|M|=p^{2}$. In this case $\left|U_{M}\right|=\left|W_{M}\right|=6 p$ and $|A / M|=2^{r+1} \cdot 3^{2} \cdot p$. Again take L / M to be a minimal normal subgroup of A / M.
(a) If $L / M \cong T^{m}$ is non-solvable, then T is a simple K_{3}-group. Since the power of 3 in $|T|$ is at most 2 , according to Theorem 2.1 we must have $T \cong \mathbb{A}_{5}$, $\mathbb{A}_{6}, L_{2}(7), L_{2}(8)$ or $L_{2}(17)$. Since we have assumed $p>7$, it follows that $T \cong L_{2}(17)$ and hence $p=17$. As 3^{2} divides the order of $L_{2}(17), m$ should equal 1 and so $L / M \cong L_{2}(17)$. Now 3 does not divide the order of $A / L \cong$ $(A / M) /(L / M)$ and therefore by Proposition $2.6, \Gamma$ is L-semi-symmetric. Since L / M is nonabelian simple, M is a maximal normal subgroup of L. By Theorem 2.2 we have $C_{L}(M) \unlhd N_{L}(M)=L$. Also M of order 17^{2} is abelian and therefore $M \leq C_{L}(M) \unlhd L$ from which it follows that $C_{L}(M)=M$ or L.

If $C_{L}(M)=M$, then according to Theorem 2.2, we have $L / M \leq A u t(M)$. There are two possible cases for M. Either $M \cong \mathbb{Z}_{17^{2}}$ or $M \cong \mathbb{Z}_{17} \times \mathbb{Z}_{17}$. In the former case $\operatorname{Aut}(M)$ is cyclic of order $\varphi\left(17^{2}\right)$ and does not have a subgroup isomorphic to $L_{2}(17)$. In the latter case $\operatorname{Aut}(M) \cong G L_{2}(17)$. But according to Lemma 3.2, $G L_{2}(17)$ does not have a subgroup isomorphic to $L_{2}(17)$ either.

On the other hand if $C_{L}(M)=L$, then $M \leq Z(L)$. It follows that $Z(L)=$ M or L since M is a maximal normal subgroup of L. As L is not abelian, the equality $Z(L)=L$ is not possible and hence $Z(L)=M$. Since L / M is nonabelian simple, $L^{\prime} M / M=(L / M)^{\prime}=L / M$ and so $L^{\prime} M=L$ from which it follows that $|L|=\frac{\left|L^{\prime}\right| \cdot|M|}{\left|L^{\prime} \cap M\right|}$. The order of $L_{2}(17) \cong L / M$ and hence the order of L is divisible by 2^{4}. Therefore 2^{4} divides $\left|L^{\prime}\right| \cdot|M|$ and so divides $\left|L^{\prime}\right|$. So $\left|L^{\prime}\right|$ does not divide $|U|=6 \cdot 17^{3}$. Consequently according to Corollary 2.8 we have $6 \cdot 17^{3}$ divides $\left|L^{\prime}\right|$. In the rest of this paragraph we write p instead of 17 . This will help better understand the discussion. Since the power of p in $|A|$ is 3 , it follows from the equality $|L|=\left|L^{\prime}\right| \cdot \frac{|M|}{\left|L^{\prime} \cap M\right|}$ that $\frac{|M|}{\left|L^{\prime} \cap M\right|}$ is not divisible by p. As M is a p-group, it follows that $L^{\prime} \cap M=M$ and hence $M \leq L^{\prime}$. According to Sylow theorems M is contained in a Sylow p-subgroup of L. Assume $M \leq P$ where P is a Sylow p-subgroup of L. Each element of $M=Z(L)$ commutes with every element of P. Therefore $M \leq Z(P)$ and hence $|Z(P)| \geq p^{2}$. We claim P is abelian. In fact if P is not abelian, then $p^{2} \leq|Z(P)|<|P| \leq p^{3}$ from which it follows that $|P|=p^{3}$ and $|Z(P)|=p^{2}$. Now the quotient $P / Z(P)$ is of order p and so cyclic. But it is a well-known fact that for a nonabelian group G, the quotient $G / Z(G)$ cannot be cyclic. Therefore P is abelian and so according to Theorem 2.3 the order of $L^{\prime} \cap Z(L)=M$ is not divisible by p, a contradiction.
(b) Now assume L / M is solvable and hence elementary abelian. By Corollary 2.8 the order of L / M should divide $\left|U_{M}\right|=6 p$ and so $L / M \cong \mathbb{Z}_{2}, \mathbb{Z}_{3}$ or \mathbb{Z}_{p}. Certainly $L / M \cong \mathbb{Z}_{p}$ results in $|L|=p^{3}$ which contradicts the current assumption on $|M|$. We now discuss the two cases $L / M \cong \mathbb{Z}_{2}, \mathbb{Z}_{3}$.
(b1) If $L / M \cong \mathbb{Z}_{2}$, then $|L|=2 p^{2}$. The normal subgroup $L \unlhd A$ is intransitive on the two partite sets of Γ and so by Theorem 2.7 the graph Γ_{L} is A / L-semisymmetric with the bipartition $\left\{U_{L}, W_{L}\right\}$ where $\left|U_{L}\right|=\left|W_{L}\right|=3 p$ and where $|A / L|=2^{r} \cdot 3^{2} \cdot p$. Let $K / L \cong T^{m}$ be a minimal normal subgroup of A / L. If it is solvable and hence elementary abelian, its order should divide $3 p$ and so $K / L \cong \mathbb{Z}_{3}$ or \mathbb{Z}_{p}. Like before $K / L \cong \mathbb{Z}_{p}$ will contradict the assumption that $|M|=p^{2}$, and also $K / L \cong \mathbb{Z}_{3}$ is impossible according to Lemma 3.3. Now if K / L is not solvable, then T is a simple K_{3}-group where the power of 3 in $|T|$ is only 1 or 2 . Therefore according to Theorem 2.1 we have $T \cong \mathbb{A}_{5}, \mathbb{A}_{6}$, $L_{2}(7), L_{2}(8)$ or $L_{2}(17)$. Since $p>7$, the only possibility will be $T \cong L_{2}(17)$ and hence $p=17$. The order of $L_{2}(17)$ is divisible by 3^{2} and hence $m=1$. We conclude that $G=K / L \cong L_{2}(17)$. Now 3 does not divide the order of $(A / L) / G$ and therefore by Proposition $2.6, \Gamma_{L}$ is G-semi-symmetric. It follows that G is transitive on U_{L} with $3 \cdot 17$ points. For a vertex $u \in U_{L}$, the stabilizer G_{u} is of order $\left|G_{u}\right|=\frac{\left|L_{2}(17)\right|}{3 \cdot 17}=2^{4} \cdot 3$. For every prime power q, subgroups of $L_{2}(q)$ have been completely classified (see Chapter 3 of [16]). It can be verified that the group $L_{2}(17)$ has no subgroup of order $2^{4} \cdot 3$. This shows that the assumption of non-solvability of K / L leads to a contradiction.
(b2) If $L / M \cong \mathbb{Z}_{3}$, then $|L|=3 p^{2}$. Like before the graph Γ_{L} is A / L-semisymmetric with the bipartition $\left\{U_{L}, W_{L}\right\}$, where in this case $\left|U_{L}\right|=\left|W_{L}\right|=2 p$ and $|A / L|=2^{r+1} \cdot 3 \cdot p$. Let $K / L \cong T^{m}$ be a minimal normal subgroup of A / L. There are two cases. If K / L is solvable and hence elementary abelian, it follows from Corollary 2.8 that $K / L \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{p}. Again $K / L \cong \mathbb{Z}_{p}$ will contradict the assumption on $|M|$ and $K / L \cong \mathbb{Z}_{2}$ is not possible by Lemma 3.3. On the other hand if K / L is not solvable, then T is a simple K_{3}-group where the power of 3 in $|T|$ is only 1 . So according to Theorem $2.1, T \cong \mathbb{A}_{5}$ or $L_{2}(7)$ which are not possible since we have assumed $p>7$.

So the case $|M|=p^{2}$ is impossible.
Case 4. $|M|=p^{3}$. In this case according to Theorem 2.7, Γ is a regular M-covering of Γ_{M} which is itself cubic A / M-semi-symmetric of order 12 . So Γ_{M} is A / M-edge transitive and hence edge transitive. Now if Γ_{M} is not vertex transitive, then it must be semi-symmetric, but there is no semi-symmetric graph of order 12 according to Theorem 5 of [6]. On the other hand if Γ_{M} is vertex transitive, then it will be symmetric since according to [17] a cubic vertex and edge transitive graph is necessarily symmetric. But according to [7] there is no symmetric cubic graphs of order 12.

As every assumption on $|M|$ leads to contradictions, we conclude that there is no connected semi-symmetric cubic graph of order $12 p^{3}$ for any prime number p.

Acknowledgement. The authors would like to thank the anonymous referees for their helpful comments.

References

[1] I. Z. Bouwer, An edge but not vertex transitive cubic graph, Canad. Math. Bull. 11 (1968), 533-535. https://doi.org/10.4153/CMB-1968-063-0
[2] M. Conder, Summary of all semi-symmetric cubic graphs on up to 10000 vertices, https://www.math.auckland.ac.nz/~conder/SemisymmCubic10000.txt.
[3] M. Conder, A. Malnič, D. Marušič, and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006), no. 3, 255-294. https: //doi.org/10.1007/s10801-006-7397-3
[4] M. R. Darafsheh and M. Shahsavaran, Semisymmetric cubic graphs of order $34 p^{3}$, Bull. Korean Math. Soc. 57 (2020), no. 3, 739-750. https://doi.org/10.4134/BKMS.b190458
[5] Y.-Q. Feng, M. Ghasemi, and C. Wang, Cubic semisymmetric graphs of order $6 p^{3}$, Discrete Math. 310 (2010), no. 17-18, 2345-2355. https://doi.org/10.1016/j.disc. 2010.05.018
[6] J. Folkman, Regular line-symmetric graphs, J. Combinatorial Theory 3 (1967), 215-232.
[7] R. M. Foster, The Foster Census, Charles Babbage Research Centre, Winnipeg, MB, 1988.
[8] D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377-406. https://doi.org/10.2307/1971203
[9] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra 10 (1968), 383-388. https://doi.org/10.1016/0021-8693(68) 90088-4
[10] B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.
[11] J. H. Kwak and R. Nedela, Graphs and their coverings, Lecture Notes Series, 17, 2007.
[12] Z. Lu, C. Wang, and M. Xu, On semisymmetric cubic graphs of order $6 p^{2}$, Sci. China Ser. A 47 (2004), no. 1, 1-17. https://doi.org/10.1360/02ys0241
[13] A. Malnič, D. Marušič, and C. Wang, Cubic edge-transitive graphs of order $2 p^{3}$, Discrete Math. 274 (2004), no. 1-3, 187-198. https://doi.org/10.1016/S0012-365X (03)000888
[14] J. S. Rose, A Course on Group Theory, Cambridge University Press, Cambridge, 1978.
[15] M. Shahsavaran and M. R. Darafsheh, Classifying semisymmetric cubic graphs of order $20 p$, Turkish J. Math. 43 (2019), no. 6, 2755-2766. https://doi.org/10.3906/mat-1904-165
[16] M. Suzuki, Group theory. II, translated from the Japanese, Grundlehren der Mathematischen Wissenschaften, 248, Springer-Verlag, New York, 1986. https://doi.org/10. 1007/978-3-642-86885-6
[17] W. T. Tutte, Connectivity in graphs, Mathematical Expositions, No. 15, University of Toronto Press, Toronto, ON, 1966.
[18] C. Q. Wang and T. S. Chen, Semisymmetric cubic graphs as regular covers of $K_{3,3}$, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 3, 405-416. https://doi.org/10.1007/s10114-007-0998-5

Pooriya Majd Amoli
Department of Mathematics
Science and Research Branch
Islamic Azad University
Tehran, Iran
Email address: pooriya_majd2007@yahoo.com

Mohammad Reza Darafsheh
School of Mathematics, Statistics, and Computer Science
College of Science
University of Tehran
Tehran, Iran
Email address: darafsheh@ut.ac.ir
Abolfazl Tehranian
Department of Mathematics
Science and Research Branch
Islamic Azad University
Tehran, Iran
Email address: tehranian@srbiau.ac.ir

