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SASAKIAN 3-METRIC AS A ∗-CONFORMAL RICCI

SOLITON REPRESENTS A BERGER SPHERE

Dibakar Dey

Abstract. In this article, the notion of ∗-conformal Ricci soliton is de-

fined as a self similar solution of the ∗-conformal Ricci flow. A Sasakian
3-metric satisfying the ∗-conformal Ricci soliton is completely classified

under certain conditions on the soliton vector field. We establish a rela-
tion with Fano manifolds and proves a homothety between the Sasakian

3-metric and the Berger Sphere. Also, the potential vector field V is a

harmonic infinitesimal automorphism of the contact metric structure.

1. Introduction

Sasakian geometry is an odd dimensional analogue of the Kaehler geometry
and perceived relevance in mathematical physics (see [4]). Due to this con-
nection with physics, importance of Sasakian geometry increases to geometers
and physicists. Ricci flow, ∗-Ricci flow, conformal Ricci flow and their different
versions are topics of mathematical physics. Analogous to the notion of ∗-Ricci
flow, the notion of ∗-conformal Ricci flow on an n-dimensional Riemannian
manifold (M, g) can be defined as

∂g

∂t
+ 2(S∗ +

1

n
g) = −pg,

where S∗ is the ∗-Ricci tensor of g and p is a non-dynamical scalar field. We
define the notion of ∗-conformal Ricci soliton as a self similar solution of the
∗-conformal Ricci flow as follows:

Definition. An almost contact metric manifold (M, g) of dimension 3 is said
to admit ∗-conformal Ricci soliton (g, V, λ) if

(1.1) LV g + 2S∗ = [2λ− (p+
2

3
)]g,

where λ is a constant, provided S∗ is symmetric.
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If the vector field V is gradient of some smooth function f on M , then the
above equation reduces to

(1.2) ∇2f + S∗ = [λ− 1

2
(p+

2

3
)]g,

where ∇2f is the Hessian of f . The ∗-conformal Ricci soliton is expanding,
steady or shrinking according as λ is negative, zero or positive respectively.

Note that, the ∗-Ricci tensor is not symmetric in general. Hence, for a non-
symmetric ∗-Ricci tensor of a manifold, the above notion is inconsistent. In a
Sasakian 3-manifold, S∗ is symmetric (given later) and hence, the above defi-
nition is well defined on Sasakian 3-manifolds. Now, it is worth considering a
notion from mathematical physics on some geometrical space having connec-
tion with physics. In this article, we consider the notion of ∗-conformal Ricci
soliton on Sasakian 3-manifolds and establish a relation with Fano manifolds
and proves a homothety between the Sasakian 3-metric and the Berger sphere.

2. Sasakian 3-manifolds

An odd dimensional differentiable manifold M is said to be an almost contact
metric manifold if it admits a structure (ϕ, ξ, η, g) satisfying

(2.1)
ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X, Y on M , where ϕ is a (1, 1)-tensor field, ξ is a unit
vector field, η is a 1-form defined by η(X) = g(X, ξ) and g is the Riemannian
metric. Using (2.1), we can easily see that

g(ϕX, Y ) = −g(X,ϕY ).

An almost contact metric manifold with dη = g(X,ϕY ) is called a contact
metric manifold. If the characteristic vector field ξ is Killing type, then a
contact metric manifold is called a K-contact manifold and if the structure
(ϕ, ξ, η, g) is normal, then a contact metric manifold is called Sasakian. Also,
an almost contact metric manifold is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X(2.2)

for any vector fields X, Y on M . A Sasakian manifold is K-contact but the
converse holds only in dimension 3. It may not be true for higher dimension
(see [8]). On a (2n+ 1)-dimensional Sasakian manifold, the following relations
are well known:

∇Xξ = −ϕX,

(∇Xη)Y = g(X,ϕY ),(2.3)

R(X,Y )ξ = η(Y )X − η(X)Y,(2.4)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X,(2.5)
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where R is the Riemann curvature tensor. Since a 3-dimensional Riemannian
manifold is conformally flat, it’s curvature tensor can be expressed as

R(X,Y )Z = [S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ]

− r

2
[g(Y, Z)X − g(X,Z)Y ],

where r is the scalar curvature defined by r = S(ei, ei) = g(Qei, ei) for any
orthonormal basis {ei} of the tangent space at any point of M , S is the Ricci
tensor. The scalar curvature r is not constant in general. Now, the Ricci tensor
for a Sasakian 3-manifold can be obtained from here as

(2.6) S(X,Y ) =
1

2
[(r − 2)g(X,Y ) + (6− r)η(X)η(Y )].

The ∗-Ricci tensor of a Sasakian 3-manifold is given by (see [3, 9])

(2.7) S∗(X,Y ) =
1

2
(r − 4)[g(X,Y )− η(X)η(Y )].

A contact metric manifold M is said to be η-Einstein if there exist two smooth
functions α and β such that

S(X,Y ) = αg(X,Y ) + βη(X)η(Y )

for all vector fields X, Y on M .
A (2n+ 1)-dimensional η-Einstein Sasakian manifold such that α = −2 and

β = 2n+ 2 is known as null-Sasakian. Also, η-Einstein Sasakian manifold with
α > −2 is called positive-Sasakian. In this case, the transverse geometry of
M is Fano, a compact manifold whose anticanonical line bundle is ample, that
is, the first Chern class of the canonical line bundle is negative-definite. For
more details, we refer the reader to go through [2]. From (2.6), we see that a
Sasakian 3-manifold is η-Einstein. Thus a Sasakian 3-manifold is null-Sasakian
if r = −2 and positive-Sasakian if r > −2. For r > −2, the transverse geometry
of the Sasakian 3-manifold is Fano.

In Riemannian geometry, a Berger sphere is a standard 3-sphere with Rie-
mannian metric from a one-parameter family, which can be obtained from the
standard metric by shrinking along fibers of a Hopf fibration. The sphere S3

and the Lie group SU(2) can be identified. We consider the basis {X1, X2, X3}
of the Lie algebra su(2) of SU(2) such that

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2.

The one-parameter family {gε : ε > 0} of left-invariant Riemannian metrics on
S3 = SU(2) given at the identity, with respect to the basis of left-invariant
vector fields X1, X2, X3 by

gε =

ε 0 0
0 1 0
0 0 1
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are called the Berger metrics on S3. The Berger spheres are the simply con-
nected complete Riemannian manifolds S3

ε = (S3, gε), ε > 0. For more details,
we refer the reader to go through the references [1] and [5].

3. ∗-conformal Ricci soliton

In this section, we consider the notion of ∗-conformal Ricci soliton in the
framework of Sasakian 3-manifolds. Observe that the ∗-Ricci tensor of a
Sasakian 3-manifold is symmetric and hence the notion of ∗-conformal Ricci
soliton is consistent in this setting.

Definition ([10]). A vector field V on an almost contact metric manifold M
is said to be an infinitesimal contact transformation if LV η = fη for some
smooth function f on M . If f = 0, then V is said to be a strict infinitesimal
contact transformation. If V leaves all the structure tensor fields φ, ξ, η and g
invariant, then V is called an infinitesimal automorphism of the contact metric
structure.

Theorem 3.1. Let M be a Sasakian 3-manifold M admitting ∗-conformal
Ricci soliton (g, V, λ). If one of the followings holds:

(a) V is an infinitesimal contact transformation,
(b) V is pointwise collinear with ξ,
(c) V is a gradient vector field,

then

(1) The manifold M is ∗-Ricci flat.
(2) The Sasakian 3-manifold M is positive Sasakian and the transverse

geometry of M is Fano.
(3) The Sasakian 3-metric g is homothetic to a Berger sphere.
(4) The potential vector field V is a harmonic infinitesimal automorphism

of the contact metric structure.

Proof. (a) If V is an infinitesimal contact transformation, then we have

(3.1) LV η = fη

for some smooth function f on M . Since dη(X,Y ) = g(X,ϕY ), then

(3.2) (LV dη)(X,Y ) = (LV g)(X,ϕY ) + g(X, (LV ϕ)Y ).

Applying (1.1) in (3.2) yields

(3.3) (LV dη)(X,Y ) = −2S∗(X,ϕY )+[2λ−(p+
2

3
)]g(X,ϕY )+g(X, (LV ϕ)Y ).

With the help of (3.1), we obtain

(3.4) LV dη = dLV η = df ∧ η + fdη,

which implies

(3.5) (LV dη)(X,Y ) =
1

2
[df(X)η(Y )− df(Y )η(X)] + fg(X,ϕY ).
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Equating (3.3) and (3.5), we get

g(X, (LV ϕ)Y ) =
1

2
[(Xf)η(Y )− (Y f)η(X)]

+ [r − 4 + f − 2λ+ (p+
2

3
)]g(X,ϕY ),

which implies

(3.6) (LV ϕ)Y =
1

2
[η(Y )Df − (Y f)ξ] + [r − 4 + f − 2λ+ (p+

2

3
)]ϕY,

where D is the gradient operator. Substituting Y = ξ in the above equation,
we have

(3.7) (LV ϕ)ξ =
1

2
[Df − (ξf)ξ].

Since (LV g)(X,Y ) = g(∇XV, Y ) + g(∇Y V,X), then tracing (1.1) yields

div V =
3

2
[2λ− (p+

2

3
)]− (r − 4),(3.8)

where ‘div’ stands for divergence. Let Ω be the volume form of M , that is,
Ω = η ∧ (dη)n 6= 0. Taking Lie derivative of this along the vector field V and
applying the formula LV Ω = (div V )Ω, (3.1) and (3.4), we obtain (div V )Ω =
(n+ 1)fΩ, which implies

(3.9) div V = (n+ 1)f.

Equating (3.8) and (3.9) yields

(3.10) r =
3

2
[2λ− (p+

2

3
)] + 4− (n+ 1)f.

Now, from (1.1), we get

(LV g)(X, ξ) = [2λ− (p+
2

3
)]η(X),

which gives

(3.11) (LV η)X − g(X,LV ξ) = [2λ− (p+
2

3
)]η(X).

First applying (3.1) in (3.11) and then substituting X = ξ gives

(3.12) η(LV ξ) = [f − 2λ+ (p+
2

3
)].

Now, Putting X = ξ in (3.11), we get

(3.13) η(LV ξ) = −1

2
[2λ− (p+

2

3
)].

Equating (3.12) and (3.13), we obtain f = 1
2 [2λ − (p + 2

3 )] = constant. In-
tegrating (3.9) and applying ‘divergence theorem’ gives f = 0 and hence,
2λ−(p+ 2

3 ) = 0. Equation (3.9) shows that V is harmonic. Therefore, Equation
(3.1) gives LV η = 0 and (3.13) implies η(LV ξ) = 0. Equation (3.10) provides
r = 4 and thus (2.7) gives S∗ = 0 proving (1). Now, (3.6) gives LV ϕ = 0 and
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(1.1) implies LV g = 0. Since f = 0, then Equation (3.7) gives (LV ϕ)ξ = 0,
which implies ϕ(LV ξ) = 0. Operating ϕ on this and using η(LV ξ) = 0, we
obtain LV ξ = 0. Therefore, V is harmonic and leaves all the structure ten-
sor fields ϕ, ξ, η, g invariant. This proves (4). Since r = 4 > −2, then M
is positive-Sasakian and the transverse geometry of M is Fano proving (3).
The Tanaka-Webster curvature (see [6]) of a Sasakian 3-manifold is given by
W = 1

4 (r + 2). Since r = 4, then W = 3
2 . Following the classification given

by Guilfoyle [7] for 0 < W < 2, we conclude that g is homothetic to a Berger
sphere proving (4). This completes the proof of part (a).

(b) If V is pointwise collinear with ξ, then there is a non-zero smooth function
b on M such that V = bξ. Now,

(3.14) (LV g)(X,Y ) = (Lbξg)(X,Y ) = (Xb)η(Y ) + (Y b)η(X).

Using (3.14) in (1.1), we have

(3.15) (Xb)η(Y ) + (Y b)η(X) + 2S∗(X,Y ) = [2λ− (p+
2

3
)]g(X,Y ).

Substituting X = Y = ξ in the preceding equation yields

(3.16) 2(ξb) = [2λ− (p+
2

3
)].

Let {ei} be any orthonormal frame on M . Substituting X = Y = ei in (3.15)
and then summing over i, we get

(3.17) 2(ξb) = 3[2λ− (p+
2

3
)]− 2(r − 4).

Equating (3.16) and (3.17), we obtain

(3.18) [2λ− (p+
2

3
)] = r − 4.

Now, differentiating (1.1) covariantly, we obtain

(3.19) (∇ZLV g)(X,Y ) = −2(∇ZS∗)(X,Y ).

The well known commutation formula (see [11])

(LV∇Xg −∇XLV g −∇[V,X]g)(Y,Z)

= − g((LV∇)(X,Y ), Z)− g((LV∇)(X,Z), Y )

leads to

g((LV∇)(X,Y ), Z) =
1

2
(∇XLV g)(Y, Z) +

1

2
(∇Y LV g)(X,Z)

− 1

2
(∇ZLV g)(X,Y ).

Using (3.19) in the preceding equation yields

(3.20) g((LV∇)(X,Y ), Z) = (∇ZS∗)(X,Y )−(∇XS∗)(Y,Z)−(∇Y S∗)(X,Z).
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Now, differentiating (2.7) covariantly along any vector field Z and applying
(2.3), we obtain

(∇ZS∗)(X,Y ) =
1

2
(Zr)[g(X,Y )− η(X)η(Y )]

− 1

2
(r − 4)[η(X)g(ϕY,Z) + η(Y )g(ϕX,Z)].(3.21)

Applying (3.21) in (3.20), we get

g((LV∇)(X,Y ), Z) =
1

2
(Zr)[g(X,Y )− η(X)η(Y )]

− 1

2
(Xr)[g(Y,Z)− η(Y )η(Z)]

− 1

2
(Y r)[g(X,Z)− η(X)η(Z)]

− (r − 4)[η(X)g(ϕY,Z) + η(Y )g(ϕX,Z)],

which implies

(LV∇)(X,Y ) =
1

2
[g(X,Y )− η(X)η(Y )]Dr

− 1

2
(Xr)[Y − η(Y )ξ]

− 1

2
(Y r)[X − η(X)ξ]

− (r − 4)[η(X)ϕY + η(Y )ϕX].(3.22)

Substituting Y = ξ in the foregoing equation and noting ξr = 0 (as ξ is Killing),
we get

(3.23) (LV∇)(X, ξ) = −(r − 4)ϕX.

Now,

(∇Y LV∇)(X, ξ) = ∇Y (LV∇)(X, ξ)− (LV∇)(∇YX, ξ)− (LV∇)(X,∇Y ξ).
Using (3.22) and (3.23) in the foregoing equation, we obtain

(∇Y LV∇)(X, ξ) = − (Y r)ϕX − (r − 4)(∇Y ϕ)X +
1

2
g(X,ϕY )Dr

− 1

2
(Xr)ϕY − 1

2
g(ϕY,Dr)[X − η(X)ξ]

+ (r − 4)η(X)[Y − η(Y )ξ].(3.24)

Due to Yano [11], we have

(LVR)(X,Y )Z = (∇XLV∇)(Y, Z)− (∇Y LV∇)(X,Z).

Using (3.24) in the above formula and applying (2.2), we obtain

(LVR)(X, ξ)ξ = (∇XLV∇)(ξ, ξ)− (∇ξLV∇)(X, ξ)

= 2(r − 4)[X − η(X)ξ].(3.25)
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From (1.1), we have

(LV g)(X, ξ) = [2λ− (p+
2

3
)]η(X),

which leads to

(3.26) (LV η)X − g(X,LV ξ) = [2λ− (p+
2

3
)]η(X).

Putting X = ξ in the preceding equation, we get

(3.27) η(LV ξ) = −1

2
[2λ− (p+

2

3
)].

Now, with the help of (2.4), (2.5), (3.26) and (3.27), we obtain

(3.28) (LVR)(X, ξ)ξ = [2λ− (p+
2

3
)][X − η(X)ξ].

Comparing (3.25) and (3.28), we infer that

(3.29) [2λ− (p+
2

3
)] = 2(r − 4).

Therefore, (3.18) and (3.29) together implies r = 4. Then by the same argu-
ment as in part (a), the results (1), (2) and (3) holds. Now, from (3.18), we get
[2λ− (p+ 2

3 )] = 0 and hence, from (3.16), we get (ξb) = 0. Equation (3.15) re-
duces to (Xb)η(Y ) + (Y b)η(X) = 0. Substituting Y = ξ here, we get (Xb) = 0
for all vector fields X, which implies b is constant. Then (3.14) gives LV g = 0.
Since V = bξ and b is constant, then it is easy to see that LV ξ = 0. Now,
(3.26) gives LV η = 0. It can be easily calculated that LV ϕ = 0. Therefore,
V leaves all the structure tensor fields invariant. Further, Since V = bξ, then
∇XV = b∇Xξ = −bϕX, which implies div V = 0 and therefore V is harmonic.
This proves (4) and the proof of part (b) is complete.

(c) Let V be gradient of some smooth function f on M , that is, V = Df .
Then Equation (1.2) can be exhibited as

(3.30) ∇XDf = [λ− 1

2
(p+

2

3
)]X −Q∗X.

It is known that

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df.

Applying (3.30) in the above formula, we can easily obtain

(3.31) R(X,Y )Df = (∇YQ∗)X − (∇XQ∗)Y.

From (3.21), we can write

(∇XQ∗)Y =
1

2
(Xr)[Y − η(Y )ξ]

− 1

2
(r − 4)[g(ϕY,X)ξ − η(Y )ϕX].(3.32)
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Applying (3.32) in (3.31), we obtain

R(X,Y )Df =
1

2
(Y r)[X − η(X)ξ]− 1

2
(Xr)[Y − η(Y )ξ]

+
1

2
(r − 4)[2g(X,ϕY )ξ − η(Y )ϕX + η(X)ϕY ].

Substituting X = ξ in the preceding equation and using ξr = 0 (as ξ is Killing),
we obtain

R(ξ, Y )Df =
1

2
(r − 4)ϕY.

Taking inner product of the preceding equation with X, we have

(3.33) g(R(ξ, Y )Df,X) =
1

2
(r − 4)g(X,ϕY ).

Since g(R(ξ, Y )Df,X) = −g(R(ξ, Y )X,Df), then with the help of (2.5), we
obtain

(3.34) g(R(ξ, Y )Df,X) = −g(X,Y )(ξf) + η(X)(Y f).

Equating (3.33) and (3.34) and then antisymmetrizing yields

(r − 4)g(X,ϕY ) = η(X)(Y f)− η(Y )(Xf).

Replacing X by ξ in the foregoing equation, we get

(Y f)− η(Y )(ξf) = 0,

which implies V = Df = (ξf)ξ, that is, V is pointwise collinear with ξ. Rest
of the proof follows from part (b). This completes the proof. �

Remark 3.2. We have obtained 2λ− (p+ 2
3 ) = 0, that is, λ = 1

2 (p+ 2
3 ). Hence,

the ∗-conformal Ricci soliton is expanding, steady or shrinking according as
1
2 (p+ 2

3 ) is negative, zero or positive respectively.
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