DOI QR코드

DOI QR Code

거리공간속 경로 그래프에 간선추가를 통한 지름의 최소화

Minimizing the Diameter by Augmenting an Edge to a Path in a Metric Space

  • Kim, Jae-Hoon (Department of Computer Engineering, Busan University of Foreign Studies)
  • 투고 : 2021.10.14
  • 심사 : 2021.12.08
  • 발행 : 2022.01.31

초록

본 논문은 거리 공간(metric space) 속에 포함된 그래프에서 각 간선의 가중치가 거리 공간 상의 두 끝 정점간의 거리로 주어지는 그래프를 다룬다. 특별히 우리는 이러한 그래프 중 n개 정점을 가진 경로 P에 관해서 연구한다. 우리는 경로 P에 하나의 간선을 추가해서 새로운 그래프 $\bar{P}$ 얻을 수 있다. 그러면 그래프 $\bar{P}$의 두 정점 사이의 최단 경로의 길이를 생각하고 이 길이들 중 최댓값에 주목한다. 이 최댓값을 그래프 $\bar{P}$의 지름(diameter)라고 부른다. 우리는 그래프 $\bar{P}$의 지름이 최소가 되도록 추가하는 간선을 찾고 싶다. 특별히 임의의 실수 λ > 0에 대해서, $\bar{P}$의 지름이 λ 이하가 되는 추가 간선이 존재하는지 여부를 결정하는 문제에 대해 O(n)시간 알고리즘을 제안한다. 이것은 이전 알려진 시간복잡도 O(nlogn)을 개선한다. 이 결정 알고리즘을 이용해서 주어진 경로 P의 길이 D에 대해서, $\bar{P}$의 지름의 최솟값을 찾는 O(nlogD) 시간 알고리즘을 제안한다

This paper deals with the graph in which the weights of edges are given the distances between two end vertices on a metric space. In particular, we will study about a path P with n vertices for these graphs. We obtain a new graph $\bar{P}$ by augmenting an edge to P. Then the length of the shortest path between two vertices on $\bar{P}$ is considered and we focus on the maximum of these lengths. This maximum is called the diameter of the graph $\bar{P}$. We wish to find the augmented edge to minimize the diameter of $\bar{P}$. Especially, for an arbitrary real number λ > 0, we should determine whether the diameter of $\bar{P}$ is less than or equal to λ and we propose an O(n)-time algorithm for this problem, which improves on the time complexity O(nlogn) previously known. Using this decision algorithm, for the length D of P, we provide an O(nlogD)-time algorithm to find the minimum of the diameter of $\bar{P}$.

키워드

과제정보

This work was supported by the research grant of the Busan University of Foreign Studies in 2021

참고문헌

  1. U. Grobe, C. Knauer, F. Stehn, J. Gudmundsson, and M. Smid, "Fast algorithms for diameter-optimally augmenting paths and trees," International Journal of Foundations of Computer Science, vol. 30, pp. 293-313, Jan. 2019. https://doi.org/10.1142/s0129054119500060
  2. N. Megiddo, "Applying parallel computation algorithms in the design of serial algorithms," Journal of the ACM, vol. 30, pp. 852-865, Jan. 1983. https://doi.org/10.1145/2157.322410
  3. D. Bilo, "Almost optimal algorithms for diameter-optimally augmenting trees," in Proceedings of the 29th International Symposium on Algorithms and Computation, pp. 40:1-40:13, 2018.
  4. E. Oh and H. K. Ahn, "A near-optimal algorithm for finding an optimal shortcut of a tree," in Proceedings of the 27th International Symposium on Algorithms and Computation, pp. 59:1-59:12, 2016.
  5. N. Alon, A. Gyarfas, and M. Ruszinko, "Decreasing the diameter of bounded degree graphs," Journal of Graph Theory, vol. 35, pp. 161-172, Sep. 2000. https://doi.org/10.1002/1097-0118(200011)35:3<161::AID-JGT1>3.0.CO;2-Y
  6. D. Bilo, L. Guala, and G. Proietti, "Improved approximability and non-approximability results for graph diameter decreasing problem," Theoretical Computer Science, vol. 417, pp. 12-22, Feb. 2012. https://doi.org/10.1016/j.tcs.2011.05.014
  7. F. Frati, S. Gaspers, J. Gudmundsson, and L. Mathieson, "Augmenting graphs to minimize the diameter," Algorithmica, vol. 72, pp. 995-1010, May. 2015. https://doi.org/10.1007/s00453-014-9886-4
  8. D. Garijo, A. Marquez, N. Rodriguez, and R. I. Silveira, "Computing optimal shortcuts for networks," European Journal of Operational Research, vol. 279, pp. 26-37, Nov. 2019. https://doi.org/10.1016/j.ejor.2019.05.018
  9. H. Wang and Y. Zhao, "Algorithms for diameters of unicycle graphs and diameter-optimally augmenting trees," in Proceedings of the 15th International Conference and Workshops on Algorithms and Computation, pp. 27-39, 2021.
  10. A. A. Schoone, H. L. Bodlaender, and J. V. Leeuwen, "Diameter increase caused by edge deletion," Journal of Graph Theory, vol. 11, pp. 409-427, Mar. 1987. https://doi.org/10.1002/jgt.3190110315
  11. B. Yang, "Euclidean chains and their shortcuts," Theoretical Computer Science, vol. 497, pp. 55-67, July. 2013. https://doi.org/10.1016/j.tcs.2012.03.021
  12. J. L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid, "Minimizing the continuous diameter when augmenting paths and cycles with shortcuts," Computational Geometry, vol. 89, pp. 409-427, Aug. 2020.
  13. C. Johnson and H. Wang, "A linear-time algorithm for radius-optimally augmenting paths in a metric space," in Proceedings of the 16th Algorithms and Data Structures Symposium, pp. 466-480, 2019.
  14. H. Wang and Y. Zhao, "A linear-time algorithm for discrete radius optimally augmenting paths in a metric space," International Journal of Computational Geometry & Applications, vol. 30, pp. 167-182, Sep. 2020. https://doi.org/10.1142/S0218195920500089