DOI QR코드

DOI QR Code

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi (Department of Civil Engineering, Ayatollah Amoli Branch, Islamic Azad University) ;
  • Mohammad Motamedi, Hour (Department of Civil Engineering, Ayatollah Amoli Branch, Islamic Azad University)
  • Received : 2021.06.30
  • Accepted : 2022.12.05
  • Published : 2022.12.25

Abstract

Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.

Keywords

References

  1. Adam, J.M., Parisi, F., Sagaseta, J. and Lu, X. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173, 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
  2. Alogla, K., Weekes, L. and Augusthus-Nelson, L. (2017), "Theoretical assessment of progressive collapse capacity of reinforced concrete structures", Mag. Concrete Res., 69(3), 145-162. https://doi.org/10.1680/jmacr.16.00319.
  3. Al-Salloum, Y.A., Abbas, H., Almusallam, T.H., Ngo, T. and Mendis, P. (2017), "Progressive collapse analysis of a typical RC high-rise tower", J. King Saud Univ. Eng. Sci., 29(4), 313-320. https://doi.org/10.1016/j.jksues.2017.06.005.
  4. Alshaikh, I.M.H., Abu Bakar, B.H., Alwesabi, E.A.H. and Akil, H.M. (2020), "Experimental investigation of the progressive collapse of reinforced concrete structures: An overview", Struct., 25, 881-900. https://doi.org/10.1016/j.istruc.2020.03.018.
  5. ANSI/AISC 360-16 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois.
  6. Arshian, A.H. and Morgenthal, G. (2017), "Three-dimensional progressive collapse analysis of reinforced concrete frame structures subjected to sequential column removal", Eng. Struct., 132, 87-97. https://doi.org/10.1016/j.engstruct.2016.11.018.
  7. ASCE/SEI 7-16 (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia.
  8. ASCE/SEI 41-17 (2017), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, Virginia.
  9. Bazant, Z. and Zhou, Y. (2001), "Why did the world trade center collapse? -Simple analysis", Arch. Appl. Mech., 71, 802-806. https://doi.org/10.1007/s004190100189.
  10. Burgess, I.W. and Davison, B. (2012), "Briefing: Role of connections in preventing steel frame collapse in fire", Proc. Inst. Civil Eng.-Eng. Comput. Mech., 165(4), 219-221. https://doi.org/10.1680/eacm.12.00013.
  11. Byfield, M., Mudalige, W., Morison, C. and Stoddart, E. (2014), "A review of progressive collapse research and regulations", Proc. Inst. Civil Eng.-Struct. Build., 167(8), 447-456. https://doi.org/10.1680/stbu.12.00023.
  12. Chen, Z., Xu, H., Zhao, Z., Yan, X. and Zhao, B. (2016), "Investigations on the mechanical behavior of suspend-dome with semirigid joints", J. Constr. Steel Res., 122, 4-24. https://doi.org/10.1016/j.jcsr.2016.01.021.
  13. Corely, W.G., Mlakar, P.F., Sozen, M.A. and Thornton, C.H. (1998), "The Oklahoma city bombing: Summary and recommendations for multihazard mitigation", J. Perform. Constr. Facil., 12(3), 100-112. https://doi.org/10.1061/(ASCE)0887-3828(1998)12:3(100).
  14. Crawford, J.E. (2002), "Retrofit methods to mitigate progressive collapse", The Multihazard Mitigation Council of the National Institute of Building Sciences, Report on the National Workshop and Recommendations for Future Effort, July.
  15. Da Silva, J.G.S., De Lima, L.R.O., Da S. Vellasco, P.C.G., De Andrade, S.A.L. and De Castro, R.A. (2008), "Nonlinear dynamic analysis of steel portal frames with semi-rigid connections", Eng. Struct., 30(9), 2566-2579. https://doi.org/10.1016/j.engstruct.2008.02.011.
  16. Ellingwood, B.R. and Leyendecker, E.V. (1978), "Approaches for design against progressive collapse", J. Struct. Div., 104(3), 413-423. https://doi.org/10.1061/JSDEAG.0004876
  17. ETABS (2019), Integrated Building Design Software, Computers and Structures, Inc: Berkeley, California, USA
  18. Faroughi, A., Moghadam, A.S. and Hosseini, M. (2017), "Seismic progressive collapse of MRF-EBF dual steel systems", Proc. Inst. Civil Eng.-Struct. Build., 170(1), 67-75. https://doi.org/10.1680/jstbu.15.00129.
  19. FEMA 351 (2000), Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, Federal Emergency Management Agency, Washington DC, USA.
  20. Ghadamian, A. and Alirezaei, M. (2021), "Progressive collapse of regular- and irregular-plan concrete structures in an earthquake", Proc. Inst. Civil Eng.-Struct. Build., 174(2), 99-116. https://doi.org/10.1680/jstbu.18.00138.
  21. Ghobadi, M.S. and Yavari, H. (2020), "Progressive collapse vulnerability assessment of irregular voided buildings located in Seismic-Prone areas", Struct., 25, 785-797. https://doi.org/10.1016/j.istruc.2020.03.063.
  22. Gomes, V.R., Tenchini, A., Lima, L. and Vellasco, P. (2020), "Robustness assessment of semi-rigid steel multi-storey frames", Struct., 25, 849-860. https://doi.org/10.1016/j.istruc.2020.03.069.
  23. Gomez-Bernal, A., Cruz-Mendoza, E. and Juarez-Garcia, H. (2012), "Seismic response of semi-rigid connections of moment resisting steel buildings: A parametric study on the effects of strength and stiffness", Behaviour of Steel Structures in Seismic Areas, Eds. Mazzolani, F.M. and Herrera, R., CRC Press, Taylor and Francis Group, London.
  24. Griffiths, H., Pugsley, A.G. and Saunders, O. (1968), "Report of the inquiry into the collapse of flats at Ronan Point, Canning Town", London: Her Majesty's Stationery Office.
  25. Gross, J.L. and McGuire, W. (1983), "Progressive collapse resistant design", J. Struct. Eng., 109(1), 1-15. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(1).
  26. GSA-Revision 1 (2016), Administration Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance, US General Services Administration, Washington DC.
  27. Hou, J., Song, L. and Liu, H. (2016), "Progressive collapse of RC frame structures after a centre column loss", Mag. Concrete Res., 68(8), 423-432. https://doi.org/10.1680/jmacr.15.00160.
  28. Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2007), "Assessment of progressive collapse in multistorey buildings", Proc. Inst. Civil Eng.-Struct. Build., 160(4), 197-205. https://doi.org/10.1680/stbu.2007.160.4.197.
  29. Kang, H. and Kim, J. (2020), "Damage mitigation of a steel column subjected to automobile collision using a honeycomb panel", J. Perform. Constr. Facil., 34(1), 04019107. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001394.
  30. Karimiyan, S. (2020), "Comparison of seismic progressive collapse distribution in low and mid-rise RC buildings due to corner and edge columns removal", Earthq. Struct., 18(6), 691-707. http://doi.org/10.12989/eas.2020.18.6.691.
  31. Karimiyan, S., Moghadam, A.S. and Vetr, M.G. (2013), "Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan", Earthq. Struct., 5(3), 277-296. http://doi.org/10.12989/eas.2013.5.3.277.
  32. Karimiyan, S., Kashan, A.H. and Karimiyan, M. (2014), "Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads", Earthq. Struct., 6(5), 473-494. http://doi.org/10.12989/eas.2014.6.5.473.
  33. Khandelwal, K. (2008), "Multi-scale computational simulation of progressive collapse of steel frames", Ph.D Thesis, University of Michigan, Ann Arbor, MI.
  34. Kiakojouri, F., Biagi, V.D., Chiaia, B. and Sheidaii, M.R. (2020), "Progressive collapse of framed building structures: Current knowledge and future prospects", Eng. Struct., 206, 110061. https://doi.org/10.1016/j.engstruct.2019.110061.
  35. Kim, J. and Kim, T. (2009a), "Assessment of progressive collapseresisting capacity of steel moment frames", J. Constr. Steel Res., 65(1), 169-179. https://doi.org/10.1016/j.jcsr.2008.03.020.
  36. Kim, J., Choi, H. and Min, K.W. (2011), "Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures", Struct. Des. Tall Spec. Build., 20(4), 515-537. https://doi.org/10.1002/tal.563.
  37. Kim, T. and Kim, J. (2009b), "Collapse analysis of steel moment frames with various seismic connections", J. Constr. Steel Res., 65(6), 1316-1322. https://doi.org/10.1016/j.jcsr.2008.11.006.
  38. Leyendecker, E.V. and Ellingwood, B.R. (1977), Design Methods for Reducing the Risk of Progressive Collapse in Buildings, National Bureau of Standards, Washington DC, USA.
  39. Liu, R., Davison, B. and Tyas, A. (2005), "A Study of progressive collapse in multi-storey steel frames", Proceedings of the Structures Congress and Exposition, New York, USA. https://doi.org/10.1061/40753(171)218.
  40. McGuire, W. (1974), "Prevention of progressive collapse", Proceedings of the Regional Conference on Tall Buildings, Asian Institute of Technology, Bangkok.
  41. Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings of the IABSE Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Zurich, Switzerland.
  42. Mirtaheri, M., Omidi, Z., Salkhordeh, M. and Mirzaeefard, H. (2021), "Seismic progressive collapse mitigation of buildings using cylindrical friction damper", Earthq. Struct., 20(1), 1-12. http://doi.org/10.12989/eas.2021.20.1.001.
  43. OpenSees (2019), Open System for Earthquake Engineering Simulation, Version 2.4.5, Pacific Earthquake Engineering Research Center University of California, Berkeley. http://opensees.berkeley.edu.
  44. Rahnavard, R., Fathi Zadeh Fard, F., Hosseini, A. and Suleiman, M. (2018), "Nonlinear analysis on progressive collapse of tall steel composite buildings", Case Stud. Constr. Mater., 8, 359-379. https://doi.org/10.1016/j.cscm.2018.03.001.
  45. Rezvani, F.H., Yousefi, A.M. and Ronagh, H.R. (2015), "Effect of span length on progressive collapse behaviour of steel moment resisting frames", Struct., 3, 81-89. https://doi.org/10.1016/j.istruc.2015.03.004.
  46. Shin, J. and Lee, K. (2008), "Seismic evaluation of steel moment resisting frame buildings with different hysteresis and stiffness models". 14th World Conference on Earthquake Engineering, Beijing, China.
  47. Shirinzadeh, M. and Haghollahi, A. (2020), "Retrofit of simple welded connections against progressive collapse", Proc. Inst. Civil Eng.-Struct. Build., 173(6), 458-468. https://doi.org/10.1680/jstbu.18.00044.
  48. Starossek, U. (Ed.) (2009), Progressive Collapse of Structures, Thomas Telford, London, UK.
  49. Sun, R., Burgess, I.W., Huang, Z. and Dong, G. (2015), "Progressive failure modelling and ductility demand of steel beam-to-column connections in fire", Eng. Struct., 89, 66-78. https://doi.org/10.1016/j.engstruct.2015.01.053.
  50. Tavakoli, H.R. and Hasani, A.H. (2017), "Effect of earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame", Earthq. Struct., 12(5), 529-541. http://doi.org/10.12989/eas.2017.12.5.529.
  51. Tavakoli, H.R., Naghavi, F. and Goltabar, A.R. (2015), "Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse", Earthq. Struct., 9(3), 639-656. http://doi.org/10.12989/eas.2015.9.3.639.
  52. Unified Facilities Criteria (UFC 4-023-03)-Change 3 (2016), Design of structures to resist progressive collapse, US Department of Defense (DoD), Washington DC.
  53. Vidalis, C.A. and Nethercot, D.A. (2014), "Redesigning composite frames for progressive collapse", Proc. Inst. Civil Eng.-Struct. Build., 167(3), 153-177. https://doi.org/10.1680/stbu.11.00091.
  54. Wang, W., Li, H. and Wang, J. (2017) "Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model", Struct., 9, 123-133. https://doi.org/10.1016/j.istruc.2016.10.004.
  55. Zhao, Z., Chen, Z., Yan, X., Xu, H. and Zhao, B. (2016), "Simplified numerical method for latticed shells that considers member geometric imperfection and semi-rigid joints", Adv. Struct. Eng., 19(4), 689-702. https://doi.org/10.1177/1369433216630123.
  56. Zhao, Z., Liu, H. and Liang, B. (2017), "Novel numerical method for the analysis of semi-rigid jointed lattice shell structures considering plasticity", Adv. Eng. Softw., 114, 208-214. https://doi.org/10.1016/j.advengsoft.2017.07.005.
  57. Zhao, Z., Liu, H., Liang, B. and Sun, Q. (2019), "Semi-rigid beam element model for progressive collapse analysis of steel frame structures", Proc. Inst. Civil Eng.-Struct. Build., 172(2), 113-126. https://doi.org/10.1680/jstbu.17.00132.
  58. Zhong, W., Meng, B. and Hao, J. (2017), "Performance of different stiffness connections against progressive collapse", J. Constr. Steel Res., 135, 162-175. https://doi.org/10.1016/j.jcsr.2017.04.021.