DOI QR코드

DOI QR Code

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • 투고 : 2022.02.28
  • 심사 : 2022.06.24
  • 발행 : 2022.09.01

초록

Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.

키워드

참고문헌

  1. Abawari RA, Tuji FA, Yadete DM. 2021. Multi traits of phosphate solublizing bacterial and fungal isolates and evaluation of their potential as biofertilizer agent for coffee production. International Journal of Applied and Agricultural Sciences 7:1-15. DOI:10.11648/j.ijaas.20210701.11.
  2. Abbaszadeh-Dahaji P, Masalehi F, Akhgar A. 2020. Improved growth and nutrition of sorghum (Sorghum bicolor) plants in a low-fertility calcareous soil treated with plant growth-promoting rhizobacteria and Fe-EDTA. Journal of Soil Science and Plant Nutrition 20:31-42. DOI:10.1007/s42729-019-00098-9.
  3. Abd-Elfattah A, Saber MS, Hilal M. 1992. The use of Thiobacillus in regulating the metabolism in a clay loam soil supplemented with elemental sulfur. Egyptian Journal of Soil Science 31:333-334.
  4. Alaylar B, Egamberdieva D, Gulluce M, Karadayi M, Arora NK. 2020. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World Journal of Microbiology and Biotechnology 36:1-12. DOI:10.1007/s11274-020-02870-x.
  5. Alaylar B, Gulluce M, Karadayi M, Isaoglu M. 2019. Rapid detection of phosphate-solubilizing bacteria from agricultural areas in Erzurum. Current Microbiology 76:804-809. DOI:10.1007/s00284-019-01688-7.
  6. Asea PEA, Kucey RMN, Stewart JWB. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry 20:459-464. DOI:10.1016/0038-0717(88)90058-2.
  7. Azaroual SE, Hazzoumi Z, Mernissi NEI, Aasfar A, Kadmiri IM, Bouizgarne B. 2020. Role of inorganic phosphate solubilizing Bacilli isolated from Moroccan phosphate rock mine and rhizosphere soils in wheat (Triticum aestivum L) phosphorus uptake. Current Microbiology 77:2391-2402. DOI:10.1007/s00284-020-02046-8.
  8. Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN. 2013. Diversity, mechanism and biotechnology of phosphate solubilizing microorganism in Mangrove-a review. Biocatalysis and Agricultural Biotechnology 3:97-110. DOI:10.1016/j.bcab.2013.09.008.
  9. Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi H. 2017b. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering and Biotechnology 15:169-178. DOI:10.1016/j.jgeb.2017.01.003.
  10. Behera BC, Yadav H, Singh SK, Sethi BK, Mishra RR, Kumari S, Thatoi H. 2017a. Alkaline phosphatase activity of a phosphate solubilizing Alcaligenes faecalis, isolated from Mangrove soil. Biotechnology Research and Innovation 1:101-111. DOI: 10.1016/j.biori.2017.01.003.
  11. Blanco-Vargas A, Rodriguez-Gacha LM, Anchez-Castro NS, Garzon-Jaramillo R, Lucas D, Pedroza-Camacho LD, Raul A, Poutou-Pinales AP, Claudia M, Rivera-Hoyos CM, et al. 2020. Phosphate-solubilizing Pseudomonas sp. and Serratia sp. co-culture for Allium cepa L. growth promotion. Heliyon 6:e05218. DOI:10.1016/j.heliyon.2020.e05218.
  12. Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IA. 2020. Phosphorus-solubilizing Trichoderma sp. from Amazon soils improves soybean plant growth. Scientific Reports 10:2858. DOI:10.1038/s41598-020-59793-8.
  13. Boubekri K, Soumare A, Mardad I, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L. 2021. The screening of potassium-and phosphate solubilizing Actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms 9:470. DOI:10.3390/microorganisms9030470.
  14. Brito LF, Lopez MG, Straube L, Passaglia LMP, Wendisch VF. 2020. Inorganic phosphate solubilization by rhizosphere bacterium Paenibacillus sonchi: Gene expression and physiological functions. Frontiers in Microbiology 11:588605. DOI:10.3389/fmicb.2020.588605.
  15. Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P. 2009. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry 41:1406-1416. DOI:10.1016/j.soilbio.2009.03.018.
  16. Chawngthu L, Hnamte R, Lalfakzuala R. 2020. Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiology Journal 37:366-375. DOI:10.1080/01490451.2019.1709108.
  17. Chen J, Zhao G, Wei Y, Dong Y, Hou L, Jiao R. 2021. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Scientific Reports 11:9081. DOI:10.1038/s41598-021-88635-4.
  18. Chen Q, Liu S. 2019. Identification and characterization of the phosphate solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology 10:2171. DOI:10.3389/fmicb.2019.02171.
  19. Chungopast S, Thongjoo C, Islam AKMM, Yeasmin S. 2021. Efficiency of phosphate-solubilizing bacteria to address phosphorus fixation in Takhli soil series: A case of sugarcane cultivation, Thailand. Plant and Soil 460:347-357. DOI:10.1007/s11104-020-04812-w.
  20. Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils 46:727-738. DOI:10.1007/s00374-010-0480-x.
  21. Djebaili R, Pellegrini M, Smati M, Del Gallo M, Kitouni M. 2020. Actinomycete strains isolated from saline soils: Plant growth promoting traits and inoculation effects on Solanum lycopersicum. Sustainability 12:4617. DOI:10.3390/su12114617.
  22. Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, et al. 2020. Screening of phosphate solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology 11:585215. DOI:10.3389/fmicb.2020.585215.
  23. Elfiati D, Delvian D, Hanum H, Susilowati A, Rachmat HH. 2021. Potential of phosphate solubilizing fungi isolated from peat soils as inoculant biofertilizer.Biodiversitas 22:3042-3048. DOI:10.13057/biodiv/d220605.
  24. El-Tarabily KA, Soaud AA, Saleh ME, Matsumoto S. 2006. Isolation and characterisation of sulfur-oxidising bacteria, including strains of rhizobium, from calcareous sandy soils and their effects on nutrient uptake and growth of maize (Zea mays L.). Australian Journal of Agricultural Research 57:101-111. DOI:10.1071/AR04237.
  25. Goldstein AH. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture and Horticulture 12:185-193. DOI:10.1080/01448765.1995.9754736.
  26. Goldstein AH, Liu ST. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72-74. DOI:10.1038/nbt0187-72.
  27. Halder AK, Mishra AK, Chakrabarty PK. 1991. Solubilization of inorganic phosphates by Bradirhizobium. Indian Journal of Experimental Biology 29:28-31. DOI:10.1590/S0103-90162011000500015.
  28. Hii YS, San Chan Y, Lau SW, Michael D. 2020. Isolation and characterization of phosphate solubilizing microorganisms from peat. Biocatalysis and Agricultural Biotechnology 26:101463. DOI:10.1016/j.bcab.2020.101643.
  29. Illmer P, Schinner F. 1995. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry 27:257-263. DOI:10.1016/0038-0717(94)00190-C.
  30. Ingle KP, Padole DA. 2017. Phosphate solubilizing microbes: An overview. Internation Journal of Current Microbiology and Applied Sciences 6:844-852. DOI:10.20546/ijcmas.2017.601.099.
  31. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. 2017. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions.Frontiers in Plant Science 8:1617. DOI:10.3389/fpls.2017.01617.
  32. Jarosch KA, Doolette AL, Smernik RJ, Tamburini F, Frossard E, Bunemann EK. 2015. Characterisation of soil organic phosphorus in NaOH-EDTA extracts: A comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biology and Biochemistry 91:298-309. DOI:10.1016/j.soilbio.2015.09.010.
  33. Jiang YF, Tian J, Ge F. 2020. New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Current Microbiology 77:4095-4103. DOI:10.1007/s00284-020-02238-2.
  34. Jones DL, Oburger E. 2011. Solubilization of phosphorus by soil microorganisms. In Phosphorus in action: Biological processes in soil phosphorus cycling. edited by Bunemann EK, Oberson A, Frossard E. Springer-Verlag, Berlin, Germany.DOI:10.1007/978-3-642-15271-9_7.
  35. Joshi G, Kumar V, Brahmachari SK. 2021. Screening and identifcation of novel halotolerant bacterial strains and assessment for insoluble phosphate solubilization and IAA production. Bulletin of the National Research Centre 45:83. DOI:10.1186/s42269-021-00545-7.
  36. Kamat SS, Raushel FM. 2013. The enzymatic conversion of phosphonates to phosphate by bacteria. Current Opinion in Chemical Biology. 17:589-596. DOI:10.1016/j.cbpa.2013.06.006.
  37. Khan MS, Zaidi A, Wani PA. 2009. Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. In Sustainable Agriculture edited by Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C. Springer, Dordrecht, Netherlands. DOI:10.1007/978-90-481-2666-8_34.
  38. Khan SU, Hooda PS, Blackwell MS, Busquets R. 2019. Microbial biomass responses to soil drying-rewetting and phosphorus leaching. Frontiers in Environmental Sciences 7:1-9. DOI:10.3389/fenvs.2019.00133.
  39. Kishore N, Pindi PK, Reddy SR. 2015. Phosphate-solubilizing microorganisms: A critical review. In Plant Biology and Biotechnology edited by Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K. pp. 307-333. Springer, New Delhi, India. DOI:10.1007/978-81-322-2286-6_12.
  40. Krishnaraj PU, Goldstein AH. 2001. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiology Letters 205:215-220. DOI:10.1111/j.1574-6968.2001.tb10950.x.
  41. Kumar R, Shastri B. 2017. Role of phosphate solubilising microorganisms in sustainable agricultural development. In Agro-Environmental Sustainability edited by Singh J, Seneviratne G. pp. 271-303. Springer, Cham, Germany. DOI:10.1007/978-3-319-49724-2_13.
  42. Li L, Chen R, Zuo Z, Lv Z, Yang Z, Mao W, Liu Y, Zhou Y, Huang J, Song Z. 2020. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB. World Journal of Microbiology and Biotechnology 36:865-869. DOI:10.1007/s11274- 019-2744-4.
  43. Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi Penicillium oxalicum and Aspergillus niger. Scientific Reports 6:1-8. DOI:10.1038/srep25313.
  44. Linu MS, Asok AK, Thampi M, Sreekumar J, Jisha MS. 2019. Plant growth promoting traits of indigenous phosphate solubilizingPseudomonas aeruginosa isolates from chilli (Capsicumannuum L.) rhizosphere. Communications in Soil Science and Plant Analysis 50:444-457.DOI:10.1080/00103624.2019.1566469.
  45. Magallon-Servin P, Antoun H, Taktek S, De-Bashan LE. 2020. Designing a multi-species inoculant of phosphate rock solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low P soil amended with PR. Biology and Fertility of Soils 56:521-536. DOI:10.1007/s00374-020-01452-1.
  46. Mahdi I, Fahsi N, Hafidi M, Benjelloun S, Allaoui A, Biskri L. 2021. Rhizospheric phosphate solubilizing Bacillus atrophaeus GQJK17 S8 increases Quinoa seedling, withstands heavy metals, and mitigates salt stress. Sustainability 13:3307. DOI:10.3390/su13063307.
  47. Mahidi SS, Hassan GI, Hussain A, Faisul-ur-Rasool. 2011. Phosphorus availability issue-its fixation and role of phosphate solubilizing bacteria in phosphate solubilization-case study. Research Journal of Agricultural Sciences 2:174-179.
  48. Mehta P, Sharma R, Putatunda C, Walia A. 2019. Endophytic fungi: Role in phosphate solubilization. pp. 183-209. In Advances in Endophytic Fungal Research edited by Singh B. Springer, Cham, Germany. DOI:10.1007/978-3-030-03589-1_9.
  49. Mendoza-Arroyo GE, Chan-Bacab MJ, Ruth Aguila-Ramirez RN, Ortega-Morales BO, Solis REC, Chab-Ruiz AO, Cob-Rivera KI, Dzib-Castillo B, Tun-Che RE, Camacho-Chab JC. 2020. Inorganic phosphate solubilization by a novel isolated bacterial strain Enterobacter sp. ITCB-09 and its application potential as biofertilizer. Agriculture 10:383. DOI:10.3390/agriculture10090383.
  50. Mercl F, Garcia-Sanchez M, Kulhanek M, Kosnar Z, Szakova J, Tlustos P. 2020. Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Applied Soil Ecology 147:103360. DOI: 10.1016/j.apsoil.2019.09.010.
  51. Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S. 2020. Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Scientific Reports 10:1-10. DOI:10.1038/s41598-020-61846-x.
  52. Nannipieri P, Giagnoni L, Landi L, Renella G. 2011. Role of phosphatase enzymes in soil. pp. 215-243. In Phosphorus in action edited by Bunemann E, Oberson A, Frossard E. Springer, Berlin, Germany. DOI:10.1007/978-3-642-15271-9_9.
  53. Nisha R, Kiran B, Kaushik A, Kaushik CP. 2018. Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. International Journal of Environmental Science and Technology 15:571-580. DOI:10.1007/s13762-017-1419-7.
  54. Oburger E, Jones DL. 2009. Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field. Soil Biology and Biochemistry 41:1951-1956. DOI:10.1016/j.soilbio.2009.06.020.
  55. Ochoa-Loza FJ, Artiola JF, Maier RM. 2001. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Journal of Environmental Quality 30:479-485. DOI:10.2134/jeq2001. 302479x.
  56. Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E. 2001. Kinetics of microbial phosphorus uptake in cultivated soils. Biology and Fertility of Soils 34:31-41. DOI:10.1007/s003740100362.
  57. Omomowo IO, Shittu OE, Omomowo OI, Majolagbe ON. 2020. Influence of phosphate solubilizing non-toxigenic Aspergillus flavus strains on maize (Zea mays L.) growth parameters and mineral nutrients content. AIMS Agriculture and Food 5:408-421. DOI:10.3934/agrfood.2020.3.408.
  58. Parks EJ, Olson GJ, Brinckman FE, Baldi F. 1990. Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. Journal of Indian Microbiology 5:183-189. DOI:10.1007/BF01573868.
  59. Qarni A, Billah M, Hussain K, Shah SH, Ahmed W, Alam S, Sheikh AA, Jafri L, Munir A, Malik KM, et al. 2021. Isolation and characterization of phosphate solubilizing microbes from rock phosphate mines and their potential effect for sustainable agriculture. Sustainability 13:2151. DOI:10.3390/su13042151.
  60. Qayum P, Shaikh JD. 2020. Phosphate solubilization potential of rhizosphere fungi isolated from agricultural fields of Marathwada region. Indian Journal of Applied Research 10:1-8. DOI:10.36106/ijar.
  61. Ramesh A, Sharma SK, Joshi OP, Khan IR. 2011. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian Journal of Microbiology 51:94-99. DOI:10.1007/s12088-011-0104-7.
  62. Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2020. Phosphate solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21:49-68. DOI:10.1007/s42729-020-00342-7.
  63. Rfaki A, Zennouhi O, Aliyat FZ, Nassiri L, Ibijbijen J. 2020. Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in moroccan wheat (Triticum aestivum L.). Geomicrobiology Journal 37:230-241. DOI:10.1080/01490451. 2019.1694106.
  64. Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology 156:989-96. DOI:10.1104/pp.111.175448.
  65. Saharan BS, Nehra V. 2011. Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research 21:1-30.
  66. Sarikhani MR, Aliasgharzad N, Khoshru B. 2020. P Solubilizing potential of some plant growth promoting bacteria used as ingredient in phosphatic biofertilizers with emphasis on growth promotion of Zea mays L. Geomicrobiology Journal 37:327-335. DOI:10.1080/01490451.2019.1700323.
  67. Scervino JM, Papinutti VL, Godoy MS, Rodriguez MA, Della Monica I, Recchi M, Pettinari MJ, Godeas AM. 2011. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology 110:1215-1223. DOI:10.1111/j.1365-2672.2011.04972.x.
  68. Selvapandiyan A, Bhatnagar RK. 1994. Isolation of a glyphosate metabolising Pseudomonas: Detection, partial purification and localization of carbon-phosphorus lyase. Applied Microbiology and Biotechnology 40:876-882. DOI:10.1007/BF00173992.
  69. Sharan A, Darmwal NS. 2008. Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World Journal Microbiology Biotechnology 24:3087-3090. DOI:10.1007/s11274-008-9807-2.
  70. Sharma S, Compantb S, Ballhausenc MB, Ruppela S, Franken P. 2020. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiology Research 240:126556. DOI:10.1016/j.micres.2020.126556.
  71. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1-14. DOI:10.1186/2193-1801-2-587.
  72. Shata SM, Selim AM, Abdel-Fattah A. 1992. Growth response of corn and wheat to sulfur-oxidizing bacteria under certain soil and irrigation conditions. In Proceedings Middle East Sulphur Symposium, Cairo.
  73. Shrivastava M, Srivastava PC, D'Souza SF. 2018. Phosphate solubilizing microbes: Diversity and phosphates solubilization mechanism. pp. 137-165. In Role of rhizospheric microbes in soil edited by Meena V. Springer, Singapore. DOI:10.1007/ 978-981-13-0044-8_5.
  74. Silgado DZ, Rivera-Leyva JC, Coleman JJ, Sanchez-Reyez A, Valencia-Diaz S, Serrano M, De-Bashan LE, Folch-Mallol JL. 2020. Soil type affects organic acid production and phosphorus solubilization efficiency mediated by several native fungal strains from Mexico. Microorganisms 8:1337. DOI:10.3390/microorganisms8091337.
  75. Sims JT, Pierzynski GM. 2005. Chemistry of phosphorus in soil. pp. 151-119. In Chemical processes in soil SSSA book series 8 edited by Tabatabai AM, Sparks DL. SSSA, Madison, USA. DOI:10.2136/sssabookser8.c2.
  76. Singh B, Satyanarayana T. 2011. Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants 17:93-103. DOI:10.1007/s12298-011-0062-x.
  77. Song J, Min L, Wu J, He Q, Chen F, Wang Y. 2021. Response of the microbial community to phosphate-solubilizing bacterial inoculants on Ulmus chenmoui Cheng in Eastern China. PLoS One 16:e0247309. DOI:10.1371/journal.pone.0247309.
  78. Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology 39:151-156. DOI:10.1590/S1517-83822008000100030.
  79. Stamford NP, Santos PR, Moura AMMF, Santos CERS, Freitas ADS. 2003. Biofertilizer with natural phosphate, sulphur and Acidithiobacillus in a soil with low available-P. Scientia Agricola 60:767-773. DOI:10.1590/S0103-90162003000400024.
  80. Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS One 13:e0204408. DOI:10.1371/journal.pone.0204408.
  81. Teng Z, Shao W, Zhang K, Huo Y, Li M. 2019. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management 231:89-197. DOI:10.1016/j.jenvman.2018.10.012.
  82. Tian J, Ge F, Zhang D, Deng S, Liu X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 10:158. DOI:10.3390/ biology10020158.
  83. Verma S, Adak A, Prasanna R, Dhar S. 2016. Microbial priming elicits improved plant growth promotion and nutrient uptake in pea. Israel Journal of Plant Sciences 63:191-207. DOI:10.1080/07929978.2016.1200352.
  84. Wagg C, Bender SF, Widmer F, Van Der Heijden MG. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of National Academy of Sciences 111:5266-5270. DOI:10.1073/pnas.1320054111. 2.
  85. Walpola BC, Song JS, Jang KY, Yoon MH. 2012. Stress induced phosphate solubilization by Aspergillus awamori bxq 33110 isolated from waste mushroom bed of Agaricus bisporus. Korean Journal of Soil Science and Fertilizer 45:428-434. DOI:10.7745/KJSSF.2012.45.3.428.
  86. Wang W, Sarponga CK, Songa C, Zhanga X, Gana Y, Wang X, Yong T, Chang X, Wang Y, Yang W. 2020b. Screening, identification and growth promotion ability of phosphate solubilizing bacteria from soybean rhizosphere under maize-soybean intercropping systems. BioRxiv. DOI: 10.1101/2020.12.15.422997.
  87. Wang YY, Li PS, Zhang BX, Wang YP, Meng J, Gao YF, He XM, Hu XM. 2020a. Identification of phosphate-solubilizing microorganisms and determination of their phosphate-solubilizing activity and growth-promoting capability. Bioresources 15:2560-2578. https://doi.org/10.15376/biores.15.2.2560-2578
  88. Yi YM, Huang WY, Ge Y. 2008. Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology 24:1059-1065. DOI:10.1007/s11274-007-9575-4.
  89. Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment 612:522-537. DOI:10.1016/j.scitotenv.2017.08. 095.