DOI QR코드

DOI QR Code

Associations for whole-exome sequencing profiling with carcass traits in crossbred pigs

  • Received : 2022.07.11
  • Accepted : 2022.08.08
  • Published : 2022.09.01

Abstract

Industrial pig breeding has used the Duroc breed and terminal sires in a three-way crossbred system in Korea. This study identified the gene variation patterns related to carcass quality in crossbred pigs ([Landrace × Yorkshire] × Duroc) using whole-exome sequencing (WES). This study used crossbred pigs and divided them into two groups (first plus grade, n = 5; second grade, n = 5). Genomic DNA samples extracted from the loin muscles of both groups were submitted for WES. A set of validated single-nucleotide polymorphisms (SNPs: n = 102) were also subjected to the Kompetitive allele-specific polymerase chain reaction (KASP) to confirm the WES results in the loin muscles. Based on the WES, SNPs associated with meat quality were found on chromosomes 5, 10, and 15. We identified variations in three of the candidate genes, including kinesin family member 5B (KIF5B), GLI family zinc finger 2 (GLI2), and KIF26B, that were associated with meat color, marbling score, and backfat thickness. These genes were associated with meat quality and the mitogen-activated protein kinase (MAPK) and Hedgehog (Hh) signaling pathways in the crossbred pigs. These results may help clarify the mechanisms underlying high-quality meat in pigs.

Keywords

References

  1. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  2. Choe JH, Yang HS, Lee SH, Go GW. 2015. Characteristics of pork belly consumption in South Korea and their health implication. Journal of Animal Science and Technology 57:22. https://doi.org/10.1186/s40781-015-0057-1
  3. Choi JW, Chung WH, Lee KT, Cho ES, Lee SW, Choi BH, Lee SH, Lim W, Lim D, Lee YG, et al. 2015. Whole-genome resequencing analyses of five pig breeds, including Korean wild and native, and three European origin breeds. DNA research 22:259-267. https://doi.org/10.1093/dnares/dsv011
  4. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brondum RF, Liao X, Djari A, Rodriguez SC, Grohs C, et al. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics 46:858-865. https://doi.org/10.1038/ng.3034
  5. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43:491-498.
  6. Falardeau F, Camurri M, Campeau P. 2016. Genomic approaches to diagnose rare bone disorders. Bone 102:5-14. https://doi.org/10.1016/j.bone.2016.07.020
  7. Gibbs KL, Greensmith L, Schiavo G. 2015. Regulation of axonal transport by protein kinases. Trends in Biochemical Sciences 40:597-610.
  8. Jeong H, Song KD, Seo M, Caetano-Anolles K, Kim J, Kwak W, Oh JD, Kim E, Jeong DK, Cho S, et al. 2015. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing. BMC genetics 16:104. https://doi.org/10.1186/s12863-015-0265-1
  9. Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. The Journal of Neuroscience 20:6374-6384. https://doi.org/10.1523/jneurosci.20-17-06374.2000
  10. KAPE (Korea Institute for Animal Products Quality Evaluation). 2018. Livestock products grading Accessed in https://www.ekape.or.kr/english/contents/list.do?menuId=menu156582&boardInfoNo= on 1 December 2018.
  11. Kim SM, Markkandan K, Lee JY, Kim GW, Yoo JY. 2020. Transcriptome profiling associated with carcass quality of loin muscles in crossbred pigs. Animals (Basel) 10:1279. https://doi.org/10.3390/ani10081279
  12. Lee J, Kang JH, Kim JM. 2019. Bayes factor-based regulatory gene network analysis of genome-wide association study of economic traits in a purebred swine population. Genes (Basel) 10:293. https://doi.org/10.3390/genes10040293
  13. Lee KT, Lee YM, Alam M, Choi BH, Park MR, Kim KS, Kim TH, Kim JJ. 2012. A whole genome association study on meat quality traits using high density SNP chips in a cross between Korean native pig and landrace. Asian-Australasian Journal of Animal Sciences 25:1529-1539. https://doi.org/10.5713/ajas.2012.12474
  14. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  16. Liang YJ, Yang WX. 2019. Kinesins in MAPK cascade: How kinesin motors are involved in the MAPK pathway? Gene 684:1-9. https://doi.org/10.1016/j.gene.2018.10.042
  17. Liu Y, Liu X, Zheng Z, Ma T, Liu Y, Long H, Cheng H, Fang M, Gong J, Li X, et al. 2020. Genome-wide analysis of expression QTL (eQTL) and allele-specific expression (ASE) in pig muscle identifies candidate genes for meat quality traits. Genetics, Selection, Evolution 52:59. https://doi.org/10.1186/s12711-020-00579-x
  18. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297-1303. https://doi.org/10.1101/gr.107524.110
  19. Meng Q, Wang K, Liu X, Zhou H, Xu L, Wang Z, Fang M. 2017. Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies. Asian-Australasian Journal of Animal Sciences 30:462-469. https://doi.org/10.5713/ajas.16.0548
  20. Park SJ, Seog JS, Moon IS, Seog DH. 2017. The regulation mechanisms of kinesin motor proteins. Journal of Life Science 27:840-848. https://doi.org/10.5352/JLS.2017.27.7.840
  21. Pig QTLdb. 2021. The animal QTL database. Accessed in https://www.animalgenome.org/cgi-bin/QTLdb/SS/index on 23 August 2021.
  22. Ramirez-Gonzalez RH, Bonnal R, Caccamo M, Maclean D. 2012. Bio-samtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code for Biology and Medicine 7:6. https://doi.org/10.1186/1751-0473-7-6
  23. Salmaninejad A, Motaee J, Farjami M, Alimardani M, Esmaeilie A, Pasdar A. 2019. Next-generation sequencing and its application in diagnosis of retinitis pigmentosa. Ophthalmic Genetics 40:393-402. https://doi.org/10.1080/13816810.2019.1675178
  24. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Fesearch 35:600-604. https://doi.org/10.3109/10799893.2015.1030412
  25. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al. 2013. From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics 43:11.10.1-11.10.33.
  26. Wang K, Li M, Hakonarson H. 2010. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38:e164. https://doi.org/10.1093/nar/gkq603
  27. Wei H, Li J, Shi S, Zhang L, Xiang A, Shi X, Yang G, Chu G. 2019. Hhip inhibits proliferation and promotes differentiation of adipocytes through suppressing hedgehog signaling pathway. Biochemical and Biophysical Research Communications 514:148-156. https://doi.org/10.1016/j.bbrc.2019.04.047
  28. Wu P, Wang K, Zhou J, Chen D, Yang X, Jiang A, Shen L, Zhang S, Xiao W, Jiang Y, et al. 2020. Whole-genome sequencing association analysis reveals the genetic architecture of meat quality traits in Chinese Qingyu pigs. Genome 63:503-515. https://doi.org/10.1139/gen-2019-0227
  29. Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. 2021. Dissecting the gene expression networks associated with variations in the major components of the fatty acid semimembranosus muscle profile in large white heavy pigs. Animals (Basel) 11:628.