Acknowledgement
This work was financially supported by the grants from the National Natural Science Foundation of China (NSFC, contract number: 51922046, 51778258 and 51838006), Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 152621/16E), and the Research Funds from China Railway Eryuan Engineering Group CO.LTD (KYY2019029), and the Research Fund of China Railway Siyuan Survey and Design Group CO.LTD (contract number: 2020K006).
References
- Alessandra, D., Salvatore, G., Giuseppe, L., Fabrizio, M. and Marco, O. (2015), "Adaptive distributed outlier detection for WSNs", IEEE T. Cybernetics, 45(5), 888-899. https://doi.org/10.1109/TCYB.2014.2338611
- Bao, Y., Tang Z., Li, H. and Zhang, Y. (2019a), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monitor., 18(2), 401-421. https://doi.org/10.1177/1475921718757405
- Bao, Y., Chen Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019b), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem. Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Banjanovic-Mehmedovic, L., Hajdarevic, A., Kantardzic, M., Mehmedovic, F. and Dzananovic, I. (2017), "Neural network-based data-driven modelling of anomaly detection in thermal power plant", Automatika, 58(1), 69-79. https://doi.org/10.1080/00051144.2017.1343328
- Bishop, C. (1995), Neural Networks for Pattern Recognition, Clarendon Press, Oxford, UK.
- Bishop, C. (2006), Pattern Recognition and Machine Learning, Springer Press, Cambridge, UK.
- Cai, S., Li, L., Li, S., Sun, R. and Yuan, G. (2020), "An efficient approach for outlier detection from uncertain data streams based on maximal frequent patterns", Expert Syst. Appl., 160, 113646. https://doi.org/10.1016/j.eswa.2020.113646
- Calabrese, L., Campanella, G. and Proverbio, E. (2012), "Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete", Constr. Build. Mater., 34, 362-371. https://doi.org/10.1016/j.conbuildmat.2012.02.046
- Chang, C., Chou, J., Tan, P. and Wang, L. (2017), "A sensor fault detection strategy for structural health monitoring systems", Smart Struct. Syst., Int. J., 20(1), 43-52. https://doi.org/10.12989/sss.2017.20.1.043
- Chen, Z., Li, H. and Bao, Y. (2019), "Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach", Struct. Health Monitor., 18(4), 1168-1188. https://doi.org/10.1177/1475921718788703
- Fu, Y., Peng, C., Gomez, F., Narazaki, Y. and Spencer Jr., B. (2019), "Sensor fault management techniques for wireless smart sensor networks in structural health monitoring", Struct. Control Health., 26(7), e2362. https://doi.org/10.1002/stc.2362
- Gul, M. and Catbas, F. (2009), "Statistical pattern recognition for structural health monitoring using time series modeling: Theory and experimental verifications", Mech. Syst. Signal Process., 23(7), 2192-2204. https://doi.org/10.1016/j.ymssp.2009.02.013
- Huang, H., Yi, T. and Li, H. (2020), "Anomaly identification of structural health monitoring data using dynamic independent component analysis", J. Comput. Civil. Eng., 34(5), 04020025. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000905
- Jiang, X., Mahadevan, S. and Adeli, H. (2007), "Bayesian wavelet packet denoising for structural system identification", Struct. Control Health., 14(2), 333-356. https://doi.org/10.1002/stc.161
- Karthick, P., Ghosh, D.M. and Ramakrishnan, S. (2018), "Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms", Comput. Meth. Prog. Bio., 154, 45-56. https://doi.org/10.1016/j.cmpb.2017.10.024
- Katicha, S., Flintsch, G., Bryce, J. and Ferne, B. (2014), "Wavelet denoising of TSD deflection slope measurements for improved pavement structural evaluation", Comput.-Aided Civil Infrastr. Eng., 29(6), 399-415. https://doi.org/10.1111/mice.12052
- Kavzoglu, T. (2009), "Increasing the accuracy of neural network classification using refined training data", Environ. Modell. Softw., 24(7), 850-858. https://doi.org/10.1016/j.envsoft.2008.11.012
- Kullaa, J. (2013), "Detection, identification, and quantification of sensor fault in a sensor network", Mech. Syst. Signal. Pr., 40(1), 208-221. https://doi.org/10.1016/j.ymssp.2013.05.007
- Lejla, B., Amel, H., Mehmed, K., Fahrudin, M. and Izet, D. (2017), "Neural network-based data-driven modelling of anomaly detection in thermal power plant", Automatika, 58(1), 69-79. https://doi.org/10.1080/00051144.2017.1343328
- Li, M. and Yuan, B. (2005), "2D-LDA: A statistical linear discriminant analysis for image matrix", Pattern Recogn. Lett., 26(5), 527-532. https://doi.org/10.1016/j.patrec.2004.09.007
- Luo, Y., Ye, Z., Guo, X., Qiang, X. and Chen, X. (2015), "Data missing mechanism and missing data real-time processing methods in the construction monitoring of steel structures", Adv. Struct. Eng., 18(4), 585-601. https://doi.org/10.1260/1369-4332.18.4.585
- Ni, K., Ramanathan, N., Chehade, M., Balzano, L., Nair, S., Zahedi, S., Kohler, E., Pottie, G., Hansen, M. and Srivastava, M. (2009), "Sensor network data fault types", ACM Transct. Sensor Network, 5(3), 1-29. https://doi.org/10.1145/1525856.1525863
- Nick, H. and Aziminejad, A. (2021), "Vibration-Based Damage Identification in Steel Girder Bridges Using Artificial Neural Network Under Noisy Conditions", J. Nondestruct. Eval., 40(1), 15. https://doi.org/10.1007/s10921-020-00744-8
- Peng, Y., Qiao, W., Qu, L. and Wang, J. (2018), "Sensor fault detection and isolation for a wireless sensor network-based remote wind turbine condition monitoring system", IEEE Transact. Ind. Appl., 54(2), 1072-1079. https://doi.org/10.1109/IAS.2017.8101845
- Smarsly, K. and Law, K. (2014), "Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Softw., 73, 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
- Tian, W., Weng, S., Xia, Y., Zhu, H., Gao, F., Sun, Y. and Li, J. (2019), "An iterative reduced-order substructuring approach to the calculation of eigensolutions and eigensensitivities", Mech. Syst. Signal. Pr., 130, 361-377. https://doi.org/10.1016/j.ymssp.2019.05.006
- Titouna, C., Nait-Abdesselam, F. and Khokhar, A. (2019), "DODS: A distributed outlier detection scheme for wireless sensor networks", Comput. Networks, 161, 93-101. https://doi.org/10.1016/j.comnet.2019.06.014
- Venugopal, G., Navaneethakrishna, M. and Ramakrishnan, S. (2014), "Extraction and analysis of multiple time window features associated with muscle fatigue conditions using sEMG signals", Expert Syst. Appl., 41(6), 2652-2659. https://doi.org/10.1016/j.eswa.2013.11.009
- Wang, Y., Yang, A., Chen, X., Wang, P., Wang, Y. and Yang, H. (2017), "A deep learning approach for blind drift calibration of sensor networks", IEEE Sens. J., 17(13), 4158-4171. https://doi.org/10.1109/JSEN.2017.2703885
- Widodo, A. and Yang, B. (2007), "Support vector machine in machine condition monitoring and fault diagnosis", Mech. Syst. Signal. Pr., 21(6), 2560-2574. https://doi.org/10.1016/j.ymssp.2006.12.007
- Yang, Y. and Nagarajaiah, S. (2014), "Blind denoising of structural vibration responses with outliers via principal component pursuit", Struct. Control Health., 21(6), 962-978. https://doi.org/10.1002/stc.1624
- Yang, Y. and Nagarajaiah, S. (2016), "Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure", Mech. Syst. Signal. Pr., 74, 165-182. https://doi.org/10.1016/j.ymssp.2015.11.009
- Yuen, K. and Mu, H. (2012), "A novel probabilistic method for robust parametric identification and outlier detection", Probabilist. Eng. Mech., 30, 48-59. https://doi.org/10.1016/j.probengmech.2012.06.002
- Yuen, K. and Ortiz, G. (2017), "Outlier detection and robust regression for correlated data", Comput. Method Appl. Mech. Eng., 313, 632-646. https://doi.org/10.1016/j.cma.2016.10.004
- Zhang, Z. and Luo, Y. (2017), "Restoring method for missing data of spatial structural stress monitoring based on correlation", Mech. Syst. Signal. Pr., 91, 266-277. https://doi.org/10.1016/j.ymssp.2017.01.018
- Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y. and Mukherjee, M. (2018), "A survey on fault diagnosis in wireless sensor networks", IEEE Access, 6, 11349-11364. https://doi.org/10.1109/ACCESS.2018.2794519
- Zhu, H., Gao, K., Xia, Y., Gao, F., Weng, S., Sun, Y. and Hu, Q. (2020), "Multi-rate data fusion for dynamic displacement measurement of beam-like supertall structures using acceleration and strain sensors", Struct. Health Monitor., 19(2), 520-536. https://doi.org/10.1177/1475921719857043
- Zvokelj, M., Zupan, S. and Prebil, I. (2011), "Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method", Mech. Syst. Signal. Pr., 25, 2631-2653. https://doi.org/10.1016/j.ymssp.2011.03.002