DOI QR코드

DOI QR Code

지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition

  • 송수민 (연세대학교 건설환경공학과) ;
  • 박종전 (연세대학교 건설환경공학과) ;
  • 정상섬 (연세대학교 건설환경공학과)
  • 투고 : 2021.09.28
  • 심사 : 2022.01.19
  • 발행 : 2022.01.31

초록

본 연구는 지하수 유무에 따른 지진시 풍화지반에 근입된 단말뚝의 동적 거동을 분석하기 위해 수치해석을 수행하였다. 3차원 유한차분해석 프로그램을 사용하여 지하수 및 지반 조건에 따라 동적 수치해석을 수행하였으며, 풍화지반의 물성은 현장에서 채취한 흙의 물성시험을 통해 해석에 적용하였다. 건조한 지반 및 포화된 지반은 Mohr-Coulomb, Finn model을 각각 적용하여 모델링하였고, 각각의 모델링은 원심모형실험 결과와 검증을 수행하였다. 해석결과, 전반적으로 지하수위가 존재하는 경우가 건조한 경우보다 더 큰 말뚝의 수평변형을 나타냈으며, 깊은 심도에서부터 그 차이가 크게 발생하는 것으로 확인되었다. 이는 포화지반에 지진이 발생하게 되면 과잉간극수압의 발생으로 인해 지반 구속압이 감소하게 되는 현상에 지배되는 것으로 확인되었다. 또한, 지반에 근입된 말뚝의 영향으로 인근 지반에서의 전단변형률이 작게 발생하고, 과잉간극수압은 말뚝과 멀리 떨어진 지반에 비해 작게 증가하는 경향을 보였다.

This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원을 통하여 지원된 국토교통기술사업화지원 '관입성과 지지력이 향상된 매입말뚝용 선단정착장치(CU파일) 개발(KAIA22TBIP-C160725-02)'과 정부(교육부)의 재원으로 '한국연구재단의 기초연구사업(2018R1A6A1A08025348)'의 지원을 받아 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Beringen, F. L., Windle, D., and Van Hooydonk, W. R. (1979), "Results of Loading Tests on Driven Piles in Sand. Recent Developments in the Design and Construction of Piles", Institute of Civil Engineering (ICE).
  2. Byrne, P. A. (1991), "Cyclic Shear-volume Coupling and Pore-pressure Model for Sand", In Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, MI, USA, 11-15, March.
  3. Carraro, J. A. H., Bandini, P., and Salgado, R. (2003), "Liquefaction Resistance of Clean and Nonplastic Silty Sands Based on Cone Penetration Resistance", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.11, pp.956-976. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(956)
  4. Dobry, R. and Abdoun, T. (2001), "Recent Studies on Seismic Centrifuge Modeling of Liquefaction and Its Effect on Deep Foundations", International Conferences on Recent Adances in Geotechnical Earthquake Engineering and Soil Dynamics, pp.1-30.
  5. Esfeh, P. K. and Amir M. K. (2020), "Earthquake Response of Monopiles and Caissons for Offshore Wind Turbines founded in Liquefiable Soil", Soil Dynamics and Earthquake Engineering, Vol.136, pp.106213. https://doi.org/10.1016/j.soildyn.2020.106213
  6. Finn, W. D. L. and Fujita, N. (2002), "Piles in Liquefiable Soils: Seismic Analysis and Design Issues", Soil Dynamics and Earthquake Engineering, Vol.22, pp.731-742. https://doi.org/10.1016/S0267-7261(02)00094-5
  7. Garala, T. K., Madabhushi, G. S. P., and Laora, R. D. (2020), "Experimental Investigation of Kinematic Pile Bending in Layered Soils using Dynamic Centrifuge Modelling", Geotechnique, pp.1-16.
  8. Garala, T. K. and Madabhushi, G. S. P. (2021), "Role of Pile Spacing on Dynamic Behavior of Pile Groups in Layered Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.147, No.3, pp.04021005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002483
  9. Hardin, B. O. and Drnevich, V. P. (1972), "Shear Modulus and Damping Soils: 1. Measurement and Parameter Effects, 2. Design Equations and Curves", Technical Reports UKY 27-70-CE 2 and 3, College of Engineering, University of Kentucky, Lexington, Kentucky.
  10. Hur, S. H., Lee, S. C., Kim, T. H., and Kim, N. J. (2021), " Effect of Fines Content Including Clay on Liquefaction of Soil", Journal of the Korean Geotechnical Society, Vol.37, No.8, pp.5-13. https://doi.org/10.7843/KGS.2021.37.8.5
  11. Itasca Consulting Group (2009), FLAC3D (Fast Lagrangian Analysis of Continua in 3Dimensions) User's Guide, Minnesota, USA.
  12. Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, Englewood Cliffs, N. J., 653.
  13. Kim, D. S., Ko, D. H., and Youn, J. U. (2004), "Dynamic Deformation Characteristics of Granite Weathered Soils using RC/TS Tests", Journal of the Korean GEO-environmental Society, Vol.5, No.1, pp.35-46.
  14. Kown, S. Y., Kim, S. J., and Yoo, M. T. (2016), "Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test", Journal of the Korean Geotechnical Society, Vol. 32, No.4, pp.5-14. https://doi.org/10.7843/KGS.2016.32.4.5
  15. Kown, S. Y., Yoo, M. T., and Kim, S. J. (2018), "Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefable Sand", Journal of the Korean Geotechnical Society, Vol.34, No.7, pp.29-38. https://doi.org/10.7843/KGS.2018.34.7.29
  16. Kown, S. Y. and Yoo, M. T. (2019), "Evaluation of Dynamic Soil-Pile-Structure Interactive Behavior in Dry Sand by 3D numerical Simulation", Applied sciences, Vol.9, No.13.
  17. Kown, S. Y. and Yoo. M. T. (2020), "Study on the Dynamic Soil-Pile-Structure Interactive Behavior in Liquefiable Sand by 3D Numerical Simulation", Applied sciences, Vol.10, No.13.
  18. Lysmer, J. and Kuhlemeyer, R. L. (1969), "Finite Dynamic Model for Infinite Media", Journal of the Engineering Mechanics Division, Vol.95, No.4, pp.859-878. https://doi.org/10.1061/JMCEA3.0001144
  19. Martin, G. R., Finn W. D, L., and Seed, H. B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical and Geoenvironmental Engineering, Vol.101, pp.324-438.
  20. Matlock, H. (1970), "Correlations for Design of Laterally Loaded Piles in Soft Clay", Offshore technology in civil engineering's hall of fame papers from the early years, pp.77-94.
  21. Murchinson, J. M. and O'Neill, M. W. (1984), "Evaluation of p-y Relationships in Cohesionless Soils", Proceedings of the ASCE symposium on analysis and design of pile foundations, pp.174-191.
  22. Onitsuka, K., Yoshitake, S., and Nanri, M. (1985), "Mechanical Properties and Strength Anisotropy of Decomposed Granite Soil", Soils and Foundations, Vol.25, No.2, pp.14-30. https://doi.org/10.3208/sandf1972.25.2_14
  23. Park, S. S. and Kim, Y. S. (2013), "Liquefaction Resistance of Sands Containing Plastic Fines with Different Plasticity", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.5, pp.825-830. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000806
  24. Popescu, R. and Prevost, J. H. (1993), "Centrifuge Validation of a Numerical Model for Dynamic Soil Liquefaction", Soil Dynamics and Earthquake Engineering, Vol.12, pp.73-90. https://doi.org/10.1016/0267-7261(93)90047-U
  25. Rahamani, A. and Pak, A. (2012), "Dynamic Behavior of Pile Foundations under Cyclic Loading in Liquefiable Soils", Computers and Geotechnics, Vol.40, pp.114-126. https://doi.org/10.1016/j.compgeo.2011.09.002
  26. Saeedi, M., Dehestani, M., Shooshpasha, I. Ghasemi, G., and Saeedi, B. (2018), "Numerical Analysis of Pile-Soil System under Seismic Liquefaction", Engineering Failure Analysis, Vol.94, pp.96-108. https://doi.org/10.1016/j.engfailanal.2018.07.031
  27. Wilson, D. W. (1998), Soil-Pile-Superstructure Interaction at Soft and Liquefying Soil Sites, Ph. D. Thesis, University of California at Davis, Davis, CA.
  28. Yang, J. S., Park, J. H., Choi, Y. S., and Park, C. K. (2006), "The Correlation between the Precipitation considering Critical Infiltration and Groundwater Level in IHP Watershed", Conference Journal of the Korean Society of Civil Engineers.
  29. Yoo, M. T. (2013), Evaluation of Dynamic Pile Behavior by Centrifuge Tests considering Kinematic Load Effect, Ph. D. Thesis, Seoul National University, South Korea.