DOI QR코드

DOI QR Code

Comparison of Liquefactive Hazard Map Regarding with Geotechnical Information and Spatial Interpolation Target

공간보간 대상 및 지반정보에 따른 액상화 재해도 비교

  • Song, Seong-wan (Dept. of Civil & Environmental Engrg,, Dankook Univ.) ;
  • Hwang, Bumsik (Korea Expressway Corporation Research Institute) ;
  • Cho, Wanjei (Dept. of Civil & Environmental Engrg,, Dankook Univ.)
  • 송성완 (단국대학교 토목환경공학과) ;
  • 황범식 (한국도로공사 도로교통연구원 안전혁신연구실) ;
  • 조완제 (단국대학교 토목환경공학과)
  • Received : 2021.06.28
  • Accepted : 2022.01.17
  • Published : 2022.01.31

Abstract

Due to the Pohang earthquakes in 2017, concerns are increasing that Korea is no longer safe from liquefaction, and needs the research to take proper measures for liquefaction. Liquefaction is defined as the loss of shear strength of the ground. In order to solve this problem, many studies, such as composing a liquefaction hazard map using Liquefaction Potential Index (LPI), have been conducted. However, domestic researches on the comparative analysis of liquefaction prediction results are not sufficient. Therefore, in this study, liquefaction hazard maps were composed using the standard penetration test results, shear wave velocity values, and cone penetration test results. After that, the precision was determined by comparing the calculated LPI using the geotechnical information and predicted LPI via spatial interpolation target. Based on the analysis results, the predicted LPI value using geotechnical information is more precise than using calculated LPI value.

지난 2017년 포항 지진에 의해 액상화가 관측됨에 따라 액상화 피해를 예측하는 연구수요가 높아지고 있다. 액상화 현상은 지반이 전단 강도를 상실하는 현상을 말하며 상부 구조물이 가라앉는 피해가 발생하게 된다. 이에 대한 대비책으로써 액상화 가능지수(Liquefaction Potential Index, LPI)를 활용하여 액상화 피해 규모를 파악하는 연구가 수행되어 왔으나 국내의 연구 사례 또한 충분하지 못한 실정이다. 이에 따라 본 연구에서는 공간보간 대상에 따른 액상화 재해도 및 액상화 가능지수를 결정하는 지반정보에 따른 액상화 재해도를 작성하고 각 재해도의 정밀도를 비교하여 액상화 재해도의 정밀도를 향상시키는 방안을 제안하고자 하였다. 그 결과, 공간보간의 대상을 LPI 결정에 활용되는 지반정보로 하는 것이 LPI값 자체를 공간보간 하는 경우에 비해 높은 정밀도를 보이는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야 대학 중점연구소 지원 사업의 연구비 지원(NRF-2018R1A6A1A 07025819) "ICT 융복합 기존건축물 내진리모델링 기술 개발"에 의해 수행되었으며 이에 깊은 감사를 드립니다.

References

  1. Andrus, R.D. and Stokoe II, K.H. (2000), "Liquefaction Resistance of Soils from Shear-wave Velocity", Journal of geotechnical and geoenvironmental engineering, Vol.126, No.11, pp.1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
  2. Baek, W. and Choi, J. (2019a), "Correlations of Arthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios", Journal of the Korean Geoenvironmental Society, Vol.20, No.5, pp.5-12. https://doi.org/10.14481/JKGES.2019.20.5.5
  3. Baek, W. and Choi, J. (2019b), "Seismic Risk Assessment on Buried Elec tric Power Tunnels with the Use of Liquefaction Hazard Map in Metropolitan Areas", Journal of Korean Society of Disaster and Security, Vol.12, No.1, pp.45-56. https://doi.org/10.21729/KSDS.2019.12.1.45
  4. Baise, L.G., Higgins, R.B., and Brankman, C.M. (2006), "Liquefaction Hazard Mapping-Statistical and Spatial Characterization of Susceptible Units", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.6, pp.705-715. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(705)
  5. Chiasson, P., Lafleur, J., Soulie, M., and Law, K.T. (1995), "Characterizing Spatial Variability of a Clay by Geostatistics", Canadian Geotechnical Journal, Vol.32, No.1, pp.1-10. https://doi.org/10.1139/t95-001
  6. Deutsch, C.V. (1996), "Correcting for Negative Weights in Ordinary Kriging", Computers and Geosciences, Vol.22, No.7, pp.765-773. https://doi.org/10.1016/0098-3004(96)00005-2
  7. Douglas, B.J., Olson, R.S., and Martin, G.R. (1981), "Evaluation of the Cone Penetrometer Test for SPT Liquefaction Assessment", Session on In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO.
  8. Goovaerts, P. (1997), "Geostatistics for Natural Resources Evaluation", Oxford University Press on Demand.
  9. Idriss, I.M. and Boulanger, R.W. (2008), "Soil Liquefatcion during Earthquakes", EERI: Earthquake Research Institute, Ca, USA.
  10. Ishihara, K. (1985), "Stability of Natural Deposits during Earthquakes", In International conference on soil mechanics and foundation engineering, Vol.11, pp.321-376.
  11. Iwasaki, T., Tatsuoka, K., Tokida, F., and Yasuda, S. (1978), "A Practical Method for Assessing Soil Liquefaction Potential based on Case Studies at Various Sites in Japan", Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, San Francisco, CA., pp.885-896.
  12. Iwasaki, T., Tokida, K.I., Tatsuoka, F., Watanabe, S., Yasuda, S., and Sato, H. (1982), "Microzonation for Soil Liquefaction Potential Using Simplified Methods", Proceedings of the 3rd international conference on microzonation, Seattle, Vol.3, No.2, pp.1310-1330.
  13. Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. (1993), "Geostatistical Modelling of the Spatial Variation of the Shear Strength of a Stiff Overconsolidated Clay", Probabilistic Methods in Geotechnical Engineering, pp.185-194.
  14. Jung, J. and David, R.J. (2014), "Preparation of Probabilistic Liquefaction Hazard Map Using Liquefaction Potential Index", Journal of the Korea Society of Civil Engineering, Vol.34, No.6, pp.1831-1836. https://doi.org/10.12652/Ksce.2014.34.6.1831
  15. Jung, Y.H., Kim, T., and Cho, W. (2014), "Gmax of Reclaimed Ground on the Western Coast of Korea Using Various Field and Laboratory Measurements", Marine Georesources and Geotechnology, Vol.32, No.4, pp.351-367. https://doi.org/10.1080/1064119X.2013.764556
  16. Kang, G.J., Park, I.J., and Kim, S.I. (2000), "Study on Mapping of Liquefaction Hazard Potential at Port and Harbor in Korea", Journal of the Earthquake Engineering Society of Korea, Vol.4, No.2, pp.57-64.
  17. Kim, I.K., Sung, W.M., and Jung, M.Y. (1993), "Development and Validation of Multi-purpose Geostatistical Model with Modified Kriging Method", Economic and Environmental Geology, Vol.26, No.2, pp.207-215.
  18. Luna, R. and Frost, J.D. (1998), "Spatial Liquefaction Analysis System", Journal of Computing in Civil Engineering, Vol.12, No.1, pp.48-56. https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(48)
  19. Robertson, P.K. and Wride, C.E. (1998), "Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test", Canadian geotechnical journal, Vol.35, No.3, pp.442-459. https://doi.org/10.1139/t98-017
  20. Seed, H.B. and Idriss, I.M. (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", J. Soil Mechanics and Foundations, Div. ASCE, Vol.97, No.9, pp.1249-273. https://doi.org/10.1061/JSFEAQ.0001662
  21. Seed, H.B. and Idriss, I.M. (1981), "Evaluation of Liquefaction Potential of Sand Deposits Based on Observations of Performance in Previous Earthquakes", Session on In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO, October.
  22. Seed, H.B., Tokimatsu, K., Harder, L.F.J., and Chung, R. (1984), "The Influence of SPT Procedures on Soil Liquefaction Resistance Evaluations", Report No. UCB/EERC-84/15. Earthquake Engineering Research Center, University of California at Berkeley.
  23. Seo, M.W., Sun, C.G., and Oh, M.H. (2009), "LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea", Journal of the Earthquake Engineering Society of Korea, Vol. 3, No.4, pp.1-13.
  24. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H. (2001), "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/ NSF Workshops on Evaluation of Liquefaction Resistance of Soils", J. Geotechnical and Geoenvironmental Eng., ASCE, Vol.127, No.10, pp.817-33. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)