DOI QR코드

DOI QR Code

Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane

PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향

  • Lee, Mihwa (Fuel Cell Test and Evaluation Center, Sunchon National University) ;
  • Oh, Sohyeong (Fuel Cell Test and Evaluation Center, Sunchon National University) ;
  • Park, Yujun (Department of Chemical Engineering, Sunchon National University) ;
  • Yoo, Donggeun (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 이미화 (순천대학교 연료전지 평가센터) ;
  • 오소형 (순천대학교 연료전지 평가센터) ;
  • 박유준 (순천대학교 화학공학과) ;
  • 유동근 (순천대학교 화학공학과) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2021.08.09
  • Accepted : 2021.10.20
  • Published : 2022.02.01

Abstract

In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 ℃, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 ℃ was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 ℃ was the lowest, and the lifespan of the membrane annealed at 165 ℃ was the longest in the OCV holding experiment, confirming that 165 ℃ was the optimal temperature for the durability of the polymer membrane.

고분자전해질 연료전지의(PEMFC)의 제막 과정에서 성능 및 내구성을 위해 건조와 어닐링의 열처리 과정이 필요하다. 본 연구에서는 고분자막 내구성 향상을 위한 최적의 어닐링 온도에 대해 연구하였다. 125~175 ℃ 온도 범위에서 어닐링하였고, 각 어닐링 온도에서 내구성의 기초 자료로 열 안정성 및 수소투과도를 측정하였다. 펜톤 반응과 OCV holding에 의해 전기화학적 내구성을 분석했다. 165 ℃ 어닐링 온도가 열 안정성과 수소투과도 면에서 최적의 온도였다. 펜톤 반응에서 165 ℃에서 어닐링한 막의 불소유출속도가 제일 낮고, OCV holding 실험에서도 165 ℃에서 어닐링한 막의 수명이 제일 길어, 165 ℃가 고분자막의 내구성을 위한 최적의 온도임을 확인했다.

Keywords

Acknowledgement

본 과제(결과물)는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.

References

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, and Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://www.energy.gov, (2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html, (2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org, (2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://en.most.gov.cn/eng/index.htm, (2016).
  6. Kamila, M. R., Alexey, M. V. P., Elena, G. A., Ivan, R. A., Dimitri, I. V. A. and Vitaly, S. V., "Effect of Annealing on Proton Conductivity of Aquivion-Like Proton Exchange Membrane," Key Engineering Materials, 869, 367-374(2020). https://doi.org/10.4028/www.scientific.net/KEM.869.367
  7. Vengatesan, S., Cho, E., Kim, H. J. and Lim, T. H., "Effects of Curing Condition of Solution Cast Nafion® Membranes on PEMFC Performance," Korean J. Chem. Eng., 26(3), 679-684(2009). https://doi.org/10.1007/s11814-009-0113-y
  8. Li, J., Yang, X., Tang, H. and Pan, M., "Durable and High Performance Nafion Membrane Prepared Through High-temperature Annealing Methodology," J. Mem. Sci., 361(1-2), 38-42(2010). https://doi.org/10.1016/j.memsci.2010.06.016
  9. Park, J. S., Shin, M. S., Sekhon, S. S., Choi, Y. W. and Yang, T. H., "Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids," J. Korean Electrochem. Soc., 14(1), 9-15(2011). https://doi.org/10.5229/JKES.2011.14.1.009
  10. Robert, C. R. M. and Moore, B., "Procedure for Preparing Solution-cast Perfluorosulfonate Ionomer Films and Membranes," Anal. Chem., 58, 2569-2570(1986). https://doi.org/10.1021/ac00125a046
  11. Robert, C. R. M. and Moore, B., "Chemical and Morphological Properties of Solution-cast Perfluorosulfonate Ionomers," Macromolecules, 21, 1334-1339(1988). https://doi.org/10.1021/ma00183a025
  12. Luan, Y. H., Zhang, Y. M., Zhang, H., Li, L., Li, H. and Liu, Y. G., "Annealing Effect of Perfluorosulfonated Ionomer Membranes on Proton Conductivity and Methanol Permeability," J. Appl. Polym. Sci., 107, 396-402(2008). https://doi.org/10.1002/app.27070
  13. DOE cell component accelerated stress test protocols for PEM fuel cells. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf. Accessed 15 Jul 2011.
  14. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  15. Lee, H. J., Cho, M. K. Jo, Y. Y. Lee, K. S. Kim, H. J. Cho, E. A. Kim, S. K., Henkensmeier, D., Lim, T. H. and Jang, J. H., "Application of TGA Techniques to Analyze the Compositional and Structuraldegradation of PEMFC MEAs," Polym. Degrad. Stab., 97(6), 1010-1016(2012). https://doi.org/10.1016/j.polymdegradstab.2012.03.016
  16. Liang, Z., Chen, W., Liu, J., Wang, S., Zhou, Z., Li, W., Sun, G. and Xin, Q., "FT-IR Study of the Microstructure of Nafion Membrane," J. Memb. Sci., 233(1-2), 39-44(2020). https://doi.org/10.1016/j.memsci.2003.12.008