DOI QR코드

DOI QR Code

Verification of the Experimental Correlation for Dynamic Contact Angle by Visualizing Interfaces of Water-Glycerol Mixture Slug in a Hydrophobic Microtube via Synchrotron X-ray Imaging

방사광 X-선 영상법을 이용한 소수성 마이크로 관 내 물-글리세롤 혼합물 슬러그 계면 가시화를 통한 동적접촉각 상관식 검증

  • Jang, Jin Gyu (Department of Mechanical Design Engineering, Pukyong National University) ;
  • Kim, Young Hyun (Department of Mechanical Design Engineering, Pukyong National University) ;
  • Kim, Kyoung Joon (Department of Mechanical Design Engineering, Pukyong National University) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University) ;
  • Lee, Yeon Won (Department of Mechanical Design Engineering, Pukyong National University) ;
  • Yu, Dong In (Department of Mechanical Design Engineering, Pukyong National University)
  • 장진규 (부경대학교 기계설계공학과) ;
  • 김영현 (부경대학교 기계설계공학과) ;
  • 김경준 (부경대학교 기계설계공학과) ;
  • 이정훈 (부경대학교 금속공학과) ;
  • 이연원 (부경대학교 기계설계공학과) ;
  • 유동인 (부경대학교 기계설계공학과)
  • Received : 2021.10.01
  • Accepted : 2021.10.13
  • Published : 2022.02.01

Abstract

Dynamic contact angles have investigated by numerous researchers for understanding interfacial behavior at moving contact lines However, due to limitation of visualization techniques, previous experiments for dynamic contact angles have conducted limitedly in hydrophilic capillary tubes based on visible ray. Recently, there is continuous need for research on dynamic contact angles in hydrophobic capillary tubes on various research and industrial fields. Therefore, in this study, we measure the dynamic contact angles of water-glycerol mixture slug in hydrophobic microtubes using synchrotron X-ray imaging. Based on the visualized data, we verified the previous experimental correlations for dynamic contact angles.

움직이는 접촉선에서의 계면 거동을 이해하기 위해 많은 연구자들은 동적접촉각에 대한 연구를 지속적으로 연구해 왔다. 하지만 가시화 기술의 한계로 선행연구에서의 동적접촉각에 대한 실험은 일반적으로 친수성 미세관에서 가시광선 기반으로 실험이 수행되었다. 하지만, 최근 다양한 연구 및 산업 분야에서 소수성 미세관에서의 동적접촉각에 대한 연구의 필요성이 대두되고 있다. 따라서, 본 연구에서는 높은 공간 및 시간 분해능을 갖는 방사광 X-선 영상법을 이용하여 소수성 마이크로 튜브 내 물-글리세롤 혼합물 슬러그의 동적접촉각을 측정하였으며, 이를 바탕으로 기존의 동적 접촉각 실험 상관식을 검증하였다.

Keywords

Acknowledgement

이 논문은 2021학년도 부경대학교 국립대학육성사업 지원비에 의하여 연구되었습니다. 이 논문은 2021년도 정부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2019R1F1A1062140). 포항방사광가속기(PLS-II 9D beamline)에서의 실험은 과학기술정보통신부와 포항공과대학교의 지원을 받았습니다.

References

  1. Rose, W. and Heins, R. W., "Moving Interfaces and Contact Angle Rate-dependency," J. Colloid Sci., 17(1), 39-48(1962). https://doi.org/10.1016/0095-8522(62)90074-0
  2. Hansen, R. J. and Toong, T. Y., "Dynamic Contact Angle and Its Relationship to Forces of Hydrodynamic Origin," J. Colloid Interface Sci., 37(1), 196-207(1971). https://doi.org/10.1016/0021-9797(71)90280-3
  3. Hoffman, R. L., "A Study of the Advancing Interface. I. InterFace Shape in Liquid-gas Systems," J. Colloid Interface Sci., 50(2), 228-241(1975). https://doi.org/10.1016/0021-9797(75)90225-8
  4. Hoffman, R. L., "A Study of the Advancing Interface: II. Theoretical Prediction of the Dynamic Contact Angle in Liquid-gas Systems," J. Colloid Interface Sci., 94(2), 470-486(1983). https://doi.org/10.1016/0021-9797(83)90287-4
  5. Kenji, K., Wakimoto, T., Yamamoto, Y. and Ito, T., "Dynamic Wetting Behavior of a Triple-phase Contact Line in Several Experimental Systems," Exp. Therm. Fluid Sci., 60, 354-360(2015). https://doi.org/10.1016/j.expthermflusci.2014.05.006
  6. Kim, S. H., Wang, T. Zhang, L. and Jiang, Y., "Hydrodynamic Analysis of the Advancing Dynamic Contact Angle in Microtube," J. Mech. Sci. Technol., 32(11), 5305-5314(2018). https://doi.org/10.1007/s12206-018-1029-4
  7. Heshmati, M. and Piri, M., "Experimental Investigation of Dynamic Contact Angle and Capillary Rise in Tubes with Circular and Noncircular Cross Sections," Langmuir, 30(47), 14151-14162(2014). https://doi.org/10.1021/la501724y
  8. Jiang, T. S., Soo-Gun, O. H. and Slattery, J. C., "Correlation for Dynamic Contact Angle," J. Colloid Interface Sci., 69(1), 74-77 (1979). https://doi.org/10.1016/0021-9797(79)90081-X
  9. Bracke, M., De Voeght, F. and Joos, P., "The Kinetics of Wetting: the Dynamic Contact Angle," Trends in Colloid Interface Sci. III, 79, 142-149(1989). https://doi.org/10.1007/BFb0116200
  10. Seebergh, J. E. and Berg, J. C., "Dynamic Wetting in the Low Capillary Number Regime," Chem. Eng. Sci., 47(17-18), 4455- 4464(1992). https://doi.org/10.1016/0009-2509(92)85123-S
  11. Meuler, A. J. McKinley, G. H. and Cohen, R. E., "Exploiting Topographical Texture to Impart Icephobicity," ACS nano, 4(12), 7048-7052(2010). https://doi.org/10.1021/nn103214q
  12. Sarti, G. C., Gostoli, C. and Matulli, S., "Low Energy Cost Desalination Processes Using Hydrophobic Membranes," Desalination, 56, 277-286(1985). https://doi.org/10.1016/0011-9164(85)85031-1
  13. Figeys, D. and Pinto, D., "Lab-on-a-chip: a Revolution in Biological and Medical Sciences," Anal. Chem., 72(9), 330A-335A(2000). https://doi.org/10.1021/ac002800y
  14. Kuiper, S. and Hendriks, B. H. W., "Variable-focus Liquid Lens for Miniature Cameras," Appl. Phys. Lett., 85(7), 1128-1130(2004). https://doi.org/10.1063/1.1779954
  15. Lim, C. and Wang, C. Y., "Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell," Electrochim. Acta, 49(24), 4149-4156(2004). https://doi.org/10.1016/j.electacta.2004.04.009
  16. Sikalo, S., Tropea, C. and Ganic, E. N., "Dynamic Wetting Angle of a Spreading Droplet," Exp. Therm. Fluid Sci., 29(7), 795-802(2005). https://doi.org/10.1016/j.expthermflusci.2005.03.006
  17. Park, S. C., Kwak, H. J., Kim, M. H., Fezzaa, K., Lee, Y. W. and Yu, D. I., "Pressure Drop with Moving Contact Lines and Dynamic Contact Angles in a Hydrophobic Round Minichannel: Visualization via Synchrotron X-ray Imaging and Verification of Experimental Correlations," Langmuir, 36(38), 11207-11214(2020). https://doi.org/10.1021/acs.langmuir.0c01014
  18. Lee, S., Park, J.-S. and Lee, T. R., "The Wettability of Fluoropolymer Surfaces: Influence of Surface Dipoles," Langmuir, 24(9), 4817-4826(2008). https://doi.org/10.1021/la700902h
  19. Blake, T. D. and Shikhmurzaev, Y. D., "Dynamic Wetting by Liquids of Different Viscosity," J. Colloid Interface Sci., 253(1), 196-202(2002). https://doi.org/10.1006/jcis.2002.8513