Acknowledgement
이 논문은 2021학년도 부경대학교 국립대학육성사업 지원비에 의하여 연구되었습니다. 이 논문은 2021년도 정부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2019R1F1A1062140). 포항방사광가속기(PLS-II 9D beamline)에서의 실험은 과학기술정보통신부와 포항공과대학교의 지원을 받았습니다.
References
- Rose, W. and Heins, R. W., "Moving Interfaces and Contact Angle Rate-dependency," J. Colloid Sci., 17(1), 39-48(1962). https://doi.org/10.1016/0095-8522(62)90074-0
- Hansen, R. J. and Toong, T. Y., "Dynamic Contact Angle and Its Relationship to Forces of Hydrodynamic Origin," J. Colloid Interface Sci., 37(1), 196-207(1971). https://doi.org/10.1016/0021-9797(71)90280-3
- Hoffman, R. L., "A Study of the Advancing Interface. I. InterFace Shape in Liquid-gas Systems," J. Colloid Interface Sci., 50(2), 228-241(1975). https://doi.org/10.1016/0021-9797(75)90225-8
- Hoffman, R. L., "A Study of the Advancing Interface: II. Theoretical Prediction of the Dynamic Contact Angle in Liquid-gas Systems," J. Colloid Interface Sci., 94(2), 470-486(1983). https://doi.org/10.1016/0021-9797(83)90287-4
- Kenji, K., Wakimoto, T., Yamamoto, Y. and Ito, T., "Dynamic Wetting Behavior of a Triple-phase Contact Line in Several Experimental Systems," Exp. Therm. Fluid Sci., 60, 354-360(2015). https://doi.org/10.1016/j.expthermflusci.2014.05.006
- Kim, S. H., Wang, T. Zhang, L. and Jiang, Y., "Hydrodynamic Analysis of the Advancing Dynamic Contact Angle in Microtube," J. Mech. Sci. Technol., 32(11), 5305-5314(2018). https://doi.org/10.1007/s12206-018-1029-4
- Heshmati, M. and Piri, M., "Experimental Investigation of Dynamic Contact Angle and Capillary Rise in Tubes with Circular and Noncircular Cross Sections," Langmuir, 30(47), 14151-14162(2014). https://doi.org/10.1021/la501724y
- Jiang, T. S., Soo-Gun, O. H. and Slattery, J. C., "Correlation for Dynamic Contact Angle," J. Colloid Interface Sci., 69(1), 74-77 (1979). https://doi.org/10.1016/0021-9797(79)90081-X
- Bracke, M., De Voeght, F. and Joos, P., "The Kinetics of Wetting: the Dynamic Contact Angle," Trends in Colloid Interface Sci. III, 79, 142-149(1989). https://doi.org/10.1007/BFb0116200
- Seebergh, J. E. and Berg, J. C., "Dynamic Wetting in the Low Capillary Number Regime," Chem. Eng. Sci., 47(17-18), 4455- 4464(1992). https://doi.org/10.1016/0009-2509(92)85123-S
- Meuler, A. J. McKinley, G. H. and Cohen, R. E., "Exploiting Topographical Texture to Impart Icephobicity," ACS nano, 4(12), 7048-7052(2010). https://doi.org/10.1021/nn103214q
- Sarti, G. C., Gostoli, C. and Matulli, S., "Low Energy Cost Desalination Processes Using Hydrophobic Membranes," Desalination, 56, 277-286(1985). https://doi.org/10.1016/0011-9164(85)85031-1
- Figeys, D. and Pinto, D., "Lab-on-a-chip: a Revolution in Biological and Medical Sciences," Anal. Chem., 72(9), 330A-335A(2000). https://doi.org/10.1021/ac002800y
- Kuiper, S. and Hendriks, B. H. W., "Variable-focus Liquid Lens for Miniature Cameras," Appl. Phys. Lett., 85(7), 1128-1130(2004). https://doi.org/10.1063/1.1779954
- Lim, C. and Wang, C. Y., "Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell," Electrochim. Acta, 49(24), 4149-4156(2004). https://doi.org/10.1016/j.electacta.2004.04.009
- Sikalo, S., Tropea, C. and Ganic, E. N., "Dynamic Wetting Angle of a Spreading Droplet," Exp. Therm. Fluid Sci., 29(7), 795-802(2005). https://doi.org/10.1016/j.expthermflusci.2005.03.006
- Park, S. C., Kwak, H. J., Kim, M. H., Fezzaa, K., Lee, Y. W. and Yu, D. I., "Pressure Drop with Moving Contact Lines and Dynamic Contact Angles in a Hydrophobic Round Minichannel: Visualization via Synchrotron X-ray Imaging and Verification of Experimental Correlations," Langmuir, 36(38), 11207-11214(2020). https://doi.org/10.1021/acs.langmuir.0c01014
- Lee, S., Park, J.-S. and Lee, T. R., "The Wettability of Fluoropolymer Surfaces: Influence of Surface Dipoles," Langmuir, 24(9), 4817-4826(2008). https://doi.org/10.1021/la700902h
- Blake, T. D. and Shikhmurzaev, Y. D., "Dynamic Wetting by Liquids of Different Viscosity," J. Colloid Interface Sci., 253(1), 196-202(2002). https://doi.org/10.1006/jcis.2002.8513