참고문헌
- Bjerrum, L. (1967), "Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of building", Geotechnique, 17(2), 81-118. https://doi.org/10.1680/geot.1967.17.2.83.
- Butterfield, R. (1979), "A natural compression law for soils (an advance on e-log p')." Geotechnique, 29(4). https://doi.org/10.1680/geot.1979.29.4.469.
- Chandran, P., Ray, S., Mandal, C., Mandal, D., Prasad, J., Sarkar, D., Tiwary, P., Patil, N., Reddy, G.P.O., Lokhande, M., Wadhai, K., Dongare, V., Sidhu, G., Sahoo, A., Nair, K., Singh, S., Pal, D. and Bhattacharyya, T. (2012), "Revision of Black Soil Map of India for Sustainable Crop Production", National Seminar on Geospatial Solutions for Resource Conservation and Management.
- Das, B.M. (2019), "Advanced soil mechanics", Crc Press.
- Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2013), "Soil creep effects on ground lateral deformation and pore water pressure under embankments", Geomech. Geoeng., 8(2), 107-124. https://doi.org/10.1080/17486025.2012.727037.
- Feng, W., Lalit, B., Yin, Z. and Yin, J.H. (2017a), "Long-term Non-linear creep and swelling behavior of Hong Kong marine deposits in oedometer condition", Comput. Geotech., 84, 1-15. https://doi.org/10.1016/j.compgeo.2016.11.009.
- Feng, W., Yin, J.H., Tao, X.M., Tong, F. and Chen, W.B. (2017b), "Time and strain-rate effects on viscous stress-strain behavior of plasticine material", Int. J. Geomech., 17(5). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000806
- Feng, R., Wang, L., Wei, K. and Zhao, J. (2021), "Consolidation settlement of soil foundations containing organic matters subjected to embankment load", Geomech. Eng., 24(1), 43-55. https://doi.org/10.12989/gae.2021.24.1.043.
- Gidigasu, S.S.R. and Gawu, S.K.Y. (2013), "The mode of formation, nature and geotechnical characteristics of clack cotton soils-a review", Standard Sci. Res. Essays, 1(14), 377-390.
- Graham, J., Crooks, J.H.A. and Bell, A.L. (1983), "Time effects on the stress-strain behaviour of natural soft clays", Geotechnique, 33(3), 327-340. https://doi.org/10.1680/geot.1983.33.3.327.
- Graham, J., Crooks, J.H.A. and Bell, A.L. (1983), "Time effects on the stress-strain behaviour of natural soft clays", Geotechnique, 33(3), 327-340. https://doi.org/10.1680/geot.1983.33.3.327.
- Gupta, C. and Sharma, R.K. (2015), "Study of black cotton soil and local clay soil for sub-grade characteristic", Proceedings of the 50th Indian Geotechnical Conference, 17th-19th December 2015, Pune, India.
- Gupta, C. and Sharma, R.K. (2016), "Black cotton soil modification by the application of waste materials", Periodica Polytechnica Civil Eng., 60(4), 479-490. https://doi.org/10.3311/PPci.8010.
- Hawlader, B.C., Muhunthan, B. and Imai, G. (2003), "Viscosity effects on one-dimensional consolidation of clay", Int. J. Geomech., American Society of Civil Engineers, 3(1), 99-110. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(99).
- Jiang, N., Wang, C., Wu, Q. and Li, S. (2020), "Influence of structure and liquid limit on the secondary compressibility of soft soils", J. Mar. Sci. Eng., 8(9), 627. https://doi.org/10.3390/jmse8090627.
- Kabbaj, M., Oka, F., Leroueil, S. and Tavenas, F. (1986), "Consolidation of natural clays and laboratory testing", Consolid. Soils: Test. Eval., 378-404. https://doi.org/10.1520/STP34624S.
- Kaczmarek, L. and Dobak, P. (2017), "Contemporary overview of soil creep phenomenon", Contemp. Trend. Geosci., 6(1), 28-40. https://doi.org/10.1515/ctg-2017-0003.
- Kaniraj, S.R. and Gayathri, V. (2004), "Permeability and consolidation characteristics of compacted fly ash", J. Energy Eng., 130(1), 18-43. https://doi.org/10.1061/(ASCE)0733-9402(2004)130:1(18).
- Kelln, C., Sharma, J., Hughes, D. and Graham, J. (2008), "An improved elastic-viscoplastic soil model", Can. Geotech. J., 45(10), 1356-1376. https://doi.org/10.1139/T08-057.
- Khademi, F., and Budiman, J. (2016). "Expansive soil: causes and treatments", i-Manager's J. Civil Eng., 6(3), 1-13. https://doi.org/10.26634/jce.6.3.8083.
- Leroueil, S., Kabbaj, M. and Tavenas, F. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1680/geot.1985.35.2.159.
- Mesri, G. (1973), "Coefficient of secondary compression", ASCE J. Soil Mech. Found. Div., 99, 123-137. https://doi.org/10.1061/JSFEAQ.0001840
- Mesri, G. and Castro, A. (1987), "C α/C c concept and K 0 during secondary compression", J. Geotech. Eng., 113(3), 230-247. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(230).
- Mesri, G. and Godlewski, P.M. (1977), "Time and stress-compressibility interrelationship", ASCE J. Geotech. Eng. Div., 103(5), 417-430. https://doi.org/10.1016/0148-9062(77)91005-1.
- Mitchell, J.K. and Soga, K. (1993), Fundamentals of Soil Behavior, Wiley, New York.
- Nash, D. (2001), "Modelling the effects of Surcharge to reduce long term settlement of reclamations over soft clays: A numerical Case Study", Soil. Found., (Japanese Geotechnical Society), 41(5), 1-13. https://doi.org/10.3208/sandf.41.5_1.
- Navarro, A. (2001), "Secondary compression of clays as a local dehydration process", Geotechnique, 51(10), 859-869. https://doi.org/10.1680/geot.2001.51.10.859.
- Nelson, J.D. (2016), "Time dependence of swelling in oedometer tests on expansive soil", Japanese Geotechnical Society Special Publication, 2(12), 490-493. https://doi.org/10.3208/jgssp.OTH-35.
- Nelson, J.D., Chao, K.C., Overton, D.D. and Nelson, E.J. (2015), Foundation engineering for expansive soils, John Wiley & Sons.
- Nowamooz, H. (2014), "Effective stress concept on multi-scale swelling soils", Appl. Clay Sci., 101, 205-214. https://doi.org/10.1016/j.clay.2014.07.036.
- Powell, J.S., Take, W.A., Siemens, G. and Remenda, V.H. (2012), "Time-dependent behaviour of the Bearpaw Shale in oedometric loading and unloading", Can.Geotech. J., 49(4), 427-441. https://doi.org/10.1139/t2012-004.
- Schofield, A. and Wroth, P. (1968), Critical state soil mechanics. McGraw-hill.
- Shi, X.S., Yin, J., Feng, W. and Chen, W. (2018), "Creep coefficient of binary sand-bentonite mixtures in oedometer testing using mixture theory", Int. J. Geomech., 18(12), 4018159. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001295.
- Singh, M.J., Feng, W., Dong-Sheng, X. and Lalit, B. (2020), "Experimental sudy of compression behavior of Indian black cotton soil in oedometer condition", Int. J. Geosynth. Ground Eng., 6(2), 30. https://doi.org/10.1007/s40891-020-00207-0.
- Sun, J. (1999). "Rheology of geomaterials and applications", China Construction Publication House, Beijing, China.
- Tan, F., Zhou, W.H. and Yuen, K.V. (2018), "Effect of loading duration on uncertainty in creep analysis of clay", Int. J. Numer. Anal. Method. Geomech., 42(11), 1235-1254. https://doi.org/10.1002/nag.2788.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil mechanics in engineering practice. John Wiley & Sons.
- Villar, M.V. and Lloret, A. (2008), "Influence of dry density and water content on the swelling of a compacted bentonite", Appl. Clay Sci., 39(1-2), 38-49. https://doi.org/10.1016/j.clay.2007.04.007.
- Wang, W., Luo, Q., Yuan, B. andn Chen, X. (2020), "An investigation of time-dependent deformation characteristics of soft dredger fill", Adv. Civil Eng., 2020. https://doi.org/10.1155/2020/8861260.
- Yin, J.H. (1990), "Constitutive modelling of time-dependent stress-strain behaviour of soils", Ph.D. thesis, University of Manitoba, Winnipeg, March.
- Yin J.H. and Graham, J. (1994), "Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress strain behavior of clays", Can. Geotech. J., 31, 42-52. https://doi.org/10.1139/t94-005.
- Yin, J.H. (1999), "Non-linear creep of soils in oedometer tests", Geotechnique, 49(5), 699-707. https://doi.org/10.1680/geot.1999.49.5.699.
- Yin, J.H., Zhu, J.G. and Graham, J. (2002), "A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification", Can. Geotech. J., 39(1), 157-173. https://doi.org/10.1139/t01-074.
- Yin, J.H. and Tong, F. (2011), "Constitutive modeling of time-dependent stress-strain behaviour of saturated soils exhibiting both creep and swelling", Can. Geotech. J., 48(12), 1870-1885. https://doi.org/10.1139/t11-076.
- Yin, J. (2013), "Review of Elastic Visco-Plastic Modeling of the Time-Dependent Stress-Strain Behavior of soils and its extension and applications", Springer-Verlag Berlin Heidelberg, (3), 149-157. https://doi.org/10.1007/978-3-642-32814-5_17.
- Yin, J.H. (2015), "Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials", Int. J. Geomech., 15(5), https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485.
- Yuan, Y. (2016), "A new elasto-viscoplastic model for rate-dependent behavior of clays", Ph. D. Thesis, Massachusetts Institute of Technology.
- Yuan, Y. and Whittle, A.J. (2018), "A novel elasto-viscoplastic formulation for compression behaviour of clays", Geotechnique, 68(12), 1044-1055. https://doi.org/10.1680/jgeot.16.P.276.
- Zdravkovic, L. and Carter, J. (2008), "Contributions to Geotechnique 1948-2008: Constitutive and numerical modelling", Geotechnique, 58(5), 405-412. https://doi.org/10.1680/geot.2008.58.5.405.
- Zhu, H.H., Zhang, C.C., Mei, G.X., Shi, B. and Gao, L. (2017), "Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives", Mar. Georesour. Geotec., 35(5), 688-697. https://doi.org/10.1080/1064119X.2016.1217958.