과제정보
This work was supported by the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (Grant No. Z018019), the State Key Laboratory of Subtropical Building Science, South China University of Technology (Grant No. 2017KB16), and the National Key Scientific Instruments and Equipment Development Projects of China (Grant No. 41827807).
참고문헌
- Aziz, M. (2020), "Using grain size to predict engineering properties of natural sands in Pakistan", Geomech. Eng., 22(2), 165-171. https://doi.org/10.12989/gae.2020.22.2.165.
- Ba Ant, Z.P. (1999), "Size effect on structural strength: a review", Arch. Appl. Mech., 69(9-10), 703-725. https://doi.org/10.1007/s004190050252.
- Ballesteros Canovas, J.A., Stoffel, M., Corona, C., Schraml, K., Gobiet, A., Tani, S., Sinabell, F., Fuchs, S. and Kaitna, R. (2016), "Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance", Sci. Total Environ., 557-558, 142-153. https://doi.org/10.1016/j.scitotenv.2016.03.036.
- Christoph, M., Weissbach, R., Weinberg, J., Wall, W.A. and Hart, A.J. (2019), "Modeling and characterization of cohesion in fine metal powders with a focus on additive manufacturing process simulations", Powder Technol., 343, 855-866. https://doi.org/10.1016/j.powtec.2018.11.072.
- Cundall, P.A. and Strack, O.D.L. (1980), "Discussion: A discrete numerical model for granular assemblies", Geotechnique, 30(3), 331-336. https://doi.org/10.1680/geot.1980.30.3.331.
- Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Q. Appl. Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291.
- Fang, Y. (2014a), "Theoretical and experimental investigation on size effect characteristic of strength and deformation of soil", Yantu Lixue/Rock Soil Mech., 35(1), 41-47. https://doi.org/10.7498/aps.63.034502.
- Fang, Y. (2014b), "Shear test and physical mechanism analysis on size effect of granular media", Wuli Xuebao/Acta Physica Sinica, 63(3), 274-283. https://doi.org/10.7498/aps.63.034502.
- Fang, Y.G. and Bo, L. (2016), "Multiscale problems and analysis of soil mechanics", Mech. Mater., 103, 55-67. https://doi.org/10.1016/j.mechmat.2016.09.003.
- Herrmann, H.J. (2001), "Granular matter", Proceedings of the 10th International Summer School on Fundamental Problems in Statistical Physics Altenberg Germany, August.
- Iverson, R.M. (1997), "The physics of debris flows", Rev. Geophys., 35(3), 245-296. https://doi.org/10.1029/97RG00426.
- Jia, M.C., Liu, B., Xue, J.F. and Ma, G.Q. (2020), "Coupled three-dimensional discrete element-finite difference simulation of dynamic compaction", Acta Geotech. https://doi.org/10.1007/s11440-020-01055-y.
- Jiang, Y. and Liu, M. (2003), "Granular elasticity without the Coulomb condition", Phys. Rev. Lett., 91(14), 144301. https://doi.org/10.1103/PhysRevLett.91.144301.
- Kanchi, G.M., Neeraja, V.S. and Babu, G.L.S. (2015), "Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil", Int. J. Geomech., 15(1), 06014016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000392.
- Kuhn, M.R. (2005), "Are granular materials simple? An experimental study of strain gradient effects and localization", Mech. Mater., 37(5), 607-627. https://doi.org/10.1016/j.mechmat.2004.05.001.
- Liu, D. and Yang, J. (2020), "Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests", Geomech. Eng., 23(3), 189-206. https://doi.org/10.12989/gae.2020.23.3.189.
- Mishra, B.K. (2003), "A review of computer simulation of tumbling mills by the discrete element method: Part I-contact mechanics", Int. J. Miner. Process., 71(1-4), 73-93. https://doi.org/10.1016/S0301-7516(03)00031-0.
- Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, (3rd Edition), John Wiley and Sons Inc., New York. NY, USA.
- Morgan, J.K. (1999), "Numerical simulations of granular shear zones using the distinct element method - 2. Effects of particle size distribution and interparticle friction on mechanical behavior", J. Geophys. Res. Solid Earth, 104(2), 2721-2732. https://doi.org/10.1029/1998JB900055.
- Morgan, J.K. and Boettcher, M.S. (1999), "Numerical simulations of granular shear zones using the distinct element method: 1. Shear zone kinematics and the micromechanics of localization", J. Geophys. Res. Solid Earth, 104(2), 2703-2719. https://doi.org/10.1029/1998JB900056
- Nicot, F.O., Sibille, L., Donze, F. and Darve, F. (2007), "From microscopic to macroscopic second-order work in granular assemblies", Mech. Mater., 39(7), 664-684. https://doi.org/10.1016/j.mechmat.2006.10.003.
- Norouzi, H.R., Zarghami, R., Sotudeh-Gharebagh, R. and Mostoufi, N. (2016), Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. John Wiley and Sons Inc., New York. NY, USA.
- Oda, M. and Kazama, H. (1998), "Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils", Geotechnique, 48(4), 465-481. https://doi.org/10.1680/geot.1998.48.4.465.
- Onturk, K., Bol, E., Ozocak, A. and Edil, T.B. (2020), "Effect of grain size on the shear strength of unsaturated silty soils", Geomech. Eng., 23(4), 301-311. https://doi.org/10.12989/GAE.2020.23.4.301.
- Park, T.W., Kim, H.J., Tanvir, M.T., Lee, J.B. and Moon, S.G. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099
- Roscoe, K.H., Schofield, A.N. and Thurairajah, A., (1963), "Yielding of clays in state wetter than critical",Geotechnique, 13(3), 21-40. https://doi.org/10.1680/geot.1963.13.3.211.
- Vardoulakis, I. and Muhlhaus, H.B. (1987), "The thickness of shear bands in granular materials", Geotechnique, 37(3), 271-283. https://doi.org/10.1680/geot.1987.37.3.271.
- Zheng, H., Zhang, P. and Du, X. (2016), "Dual form of discontinuous deformation analysis", Comput. Method. Appl. M., 305, 196-216, https://doi.org/10.1016/j.cma.2016.03.008.