Acknowledgement
This research was supported by Grant 51779033 from the National Natural Science Foundation of China for which the authors are grateful.
References
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B-Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Mater. Sci. Proc., 123, 123-296. https://doi.org/10.1007/s00339-017-0854-0.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Anandrao, K.S., Gupta, R.K., Ramachandran, P. and Rao, G.V. (2012), "Free vibration analysis of functionally graded beams", Defence Sci. J., 62(3), 139-146. http://doi.org/10.14429/dsj.62.1326.
- Aubad, M.J., Khafaji, S.O.W., Hussein, M.T. and Al-Shujairi, M.A. (2019), "Modal analysis and transient response of axially functionally graded (AFG) beam using finite element method", Mater. Res. Exp., 6(10), 1065G4. https://doi.org/10.1088/2053-1591/ab4234.
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
- Bazyar, M.H. and Talebi, A. (2015), "Scaled boundary finite-element method for solving non-homogeneous anisotropic heat conduction problems", Appl. Math. Model., 39(23), 7583-7599. https://doi.org/10.1016/j.apm.2015.03.024.
- Bekhadda, A., Cheikh, A. and Bensaid, I. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircraft Spacecraft Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.
- Celebi, K. and Tutuncu, N. (2014), "Free vibration analysis of functionally graded beams using an exact plane elasticity approach", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 228(14), 2488-2494. https://doi.org/10.1177/0954406213519974.
- Celebi, K., Yarimpabuc, D. and Tutuncu, N. (2017), "Free vibration analysis of functionally graded beams using complementary functions method", Arch. Appl. Mech., 88(5), 729-739. https://doi.org/10.1007/s00419-017-1338-6.
- Celebi, K., Yarimpabuc, D. and Tutuncu, N. (2018), "Free vibration analysis of functionally graded beams using complementary functions method", Arch. Appl. Mech., 88(5), 729-739. https://doi.org/10.1007/s00419-017-1338-6.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4.
- Claim, F.F. (2016), "Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation", Compos. Part B-Eng., 103(103), 98-112. https://doi.org/10.1016/j.compositesb.2016.08.008.
- Deeks, A.J. and Wolf, J.P. (2002), "A virtual work derivation of the scaled boundary finite-element method for elastostatics", Comput. Mech., 28(6), 489-504. https://doi.org/10.1007/s00466-002-0314-2.
- Fouda, N., Elmidany, T.T., Sadoun, A.M. and Polit, O. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/JACM.2017.21924.1121.
- Ghayesh, M.H. and Farokhi, H. (2018), "Bending and vibration analyses of coupled axially functionally graded tapered beams", Nonlin. Dyn., 91(1), 17-28. https://doi.org/10.1007/s11071-017-3783-8.
- Gravenkamp, H. and Natarajan, S. (2018), "Scaled boundary polygons for linear elastodynamics", Comput. Meth. Appl. Mech. Eng., 333, 238-256. https://doi.org/10.1016/j.cma.2018.01.031.
- He, Y.Q., Yang, H.T. and Deeks, A.J. (2013), "An element-free galerkin scaled boundary method for steady-state heat transfer problems", Numer. Heat Transf. Part B-Fundament., 64(3), 199-217. https://doi.org/10.1080/10407790.2013.791777.
- Hebbar, N., Hebbar, I., Ouinas, D. and Bourada, M. (2020), "Numerical modeling of bending, buckling, and vibration of functionally graded beams by using a higher-order shear deformation theory", Frattura ed Integrita Strutturale, 14(52), 230-246. https://doi.org/10.3221/IGF-ESIS.52.18.
- Kahya, V. and Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. Part B-Eng., 109, 108-115. https://doi.org/10.1016/j.compositesb.2016.10.039.
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019.
- Khan, M.A., Yasin, M.Y., Beg, M.S. and Khan, A.H. (2020), "Free and forced vibration analysis of functionally graded beams using finite element model based on refined third-order theory", Emerg. Trend. Mech. Eng., 603-612. https://doi.org/10.1007/978-981-32-9931-3_58.
- Li, C. and Tong, L.Y. (2015), "2D fracture analysis of magnetoelectroelastic composites by the SBFEM", Compos. Struct., 132, 984-994. https://doi.org/10.1016/j.compstruct.2015.07.015.
- Li, C., Ooi, E.T., Song, C.M. and Natarajan, S. (2015), "SBFEM for fracture analysis of piezoelectric composites under thermal load", Int. J. Solid. Struct., 52, 114-129. https://doi.org/10.1016/j.ijsolstr.2014.09.020.
- Li, L. and Hu, Y.J. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, L., Li, X.B. and Hu, Y.J. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.
- Li, L., Li, X.B. and Hu, Y.J. (2018), "Nonlinear bending of a two-dimensionally functionally graded beam", Compos. Struct., 184, 1049-1061. https://doi.org/10.1016/j.compstruct.2017.10.087.
- Li, P., Liu, J., Lin, G., Zhang, P.C. and Yang, G.T. (2017), "A NURBS-based scaled boundary finite element method for the analysis of heat conduction problems with heat fluxes and temperatures on side-faces", Int. J. Heat Mass Transf., 113, 764-779. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.065.
- Li, S.M. (2007), "Coupled finite element-scaled boundary finite element method for transient analysis of dam-reservoir interaction", International Conference on Computational Science and Its Applications, Berlin, Heidelberg. June.
- Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
- Lin, G., Liu, J., Li, J.B. and Hu, Z.Q. (2015), "A scaled boundary finite element approach for sloshing analysis of liquid storage tanks", Eng. Anal. Bound. Elem., 56, 70-80. https://doi.org/10.1016/j.enganabound.2015.02.006.
- Liu, J. and Lin, G. (2020), "A scaled boundary finite element method applied to electrostatic problems", Eng. Anal. Bound. Elem., 36(12), 1721-1732. https://doi.org/10.1016/j.enganabound.2012.06.010.
- Man, H., Song, C.M., Gao, W. and Tin-Loi, F. (2020), "A unified 3D-based technique for plate bending analysis using scaled boundary finite element method", Int. J. Numer. Meth. Eng., 91(5), 491-515. https://doi.org/10.1002/nme.4280.
- Nejad, M.Z. and Hadi, A. (2016), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005.
- Nguyen, D.K. and Gan, B.S. (2014), "Large deflections of tapered functionally graded beams subjected to end forces", Appl. Math. Model., 38(11), 3054-3066. https://doi.org/10.1016/j.apm.2013.11.032.
- Nguyen, H.N., Hong, T.T., Vinh, P.V. and Van, T.D. (2019), "An efficient beam element based on Quasi-3D theory for static bending analysis of functionally graded beams", Mater., 12(13), 2198. https://doi.org/10.3390/ma12132198.
- Piovan, M.T. and Sampaio, R. (2009), "A study on the dynamics of rotating beams with functionally graded properties", J. Sound Vib., 327(1), 134-143. https://doi.org/10.1016/j.jsv.2009.06.015.
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B-Eng., 51(51), 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solid., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(01), 1750007. https://doi.org/10.1142/S1758825117500077.
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Bending, buckling and free vibration responses of hyperbolic shear deformable FGM beams", Mech. Adv. Compos. Struct., 5, 13-24. https://doi.org/10.22075/MACS.2018.12214.1117.
- Schauer, M., Roman, J.E., Quintanaorti, E.S. and Langer, S. (2002), "Parallel computation of 3-d soil-structure interaction in time domain with a coupled FEM/SBFEM approach", J. Scientif. Comput., 52(2), 446-467. https://doi.org/10.1007/s10915-011-9551-x.
- Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.3233/SAV-2010-0589.
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64(64), 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94, 195-200. https://doi.org/10.1007/BF01176650.
- Song, C.M. and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. Mech. Eng., 147(3-4), 329-355. https://doi.org/10.1016/S0045-7825(97)00021-2.
- Song, C.M. and Wolf, J.P. (2000), "The scaled boundary finiteelement method-A primer: Solution procedures", Comput. Struct., 78(1), 211-225. https://doi.org/10.1016/S0045-7949(00)00100-0.
- Song, H. and Tao, L.B. (2009), "Hydroelastic response of a circular plate in waves using scaled boundary FEM", Omae, 1, 247-254. https://doi.org/10.1115/OMAE2009-79271.
- Sun, Z.C., Ooi, E.T. and Song, C.M. (2020), "Finite fracture mechanics analysis using the scaled boundary finite element method", Eng. Fract. Mech., 134, 330-353. https://doi.org/10.1016/j.engfracmech.2014.12.002.
- Thai, H. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B-Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B-Eng., 58, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64(64), 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
- Wang, W.Y., Guo, Z.J., Peng, Y. and Zhang, Q. (2016), "A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks", Ocean Eng., 111, 543-568. https://doi.org/10.1016/j.oceaneng.2015.11.020.
- Wang, W.Y., Peng, Y., Zhang, Q., Ren, L. and Jiang, Y. (2017), "Sloshing of liquid in partially liquid filled toroidal tank with various baffles under lateral excitation", Ocean Eng., 146, 434-456. https://doi.org/10.1016/j.oceaneng.2017.09.032.
- Wang, W.Y., Peng, Y., Zhou, Y. and Zhang, Q. (2016), "Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles", Appl. Ocean Res., 59, 543-563. https://doi.org/10.1016/j.apor.2016.07.009.
- Wang, W.Y., Tang, G.L., Song, X. and Zhou, Y. (2017), "Transient sloshing in partially filled laterally excited horizontal elliptical vessels with T-shaped baffles", J. Press. Ves. Technol., 139(2), 021302. https://doi.org/10.1115/1.4034148.
- Wang, W.Y., Zhang, Q., Ma, Q. and Ren, L. (2018), "Sloshing effects under longitudinal excitation in horizontal elliptical cylindrical containers with complex baffles", J. Waterw. Port Coast. Ocean Eng., 144(2), 04017044. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000433.
- Xie, K., Wang, Y., Fan, X. and Fu, T. (2020), "Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories", Appl. Math. Model., 77, 1860-1880. https://doi.org/10.1016/j.apm.2019.09.024.
- Xue, L.J., Bian, X.Y., Feng, J.J. and Liu, J.N. (2020), "Elastoplastic analysis of a functionally graded material beam subjected to uniformly distributed load", J. Mech., 36(1), 73-85. https://doi.org/10.1017/jmech.2019.40.
- Yang, Z.J. and Deeks, A.J. (2007), "A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method", Comput. Mech., 40, 725-738. https://doi.org/10.1007/s00466-006-0135-9.
- Ye, W.B., Liu, J., Lin, G., Xu, B. and Yu, L. (2018), "Application of scaled boundary finite element analysis for sloshing characteristics in an annular cylindrical container with porous structures", Eng. Anal. Bound. Elem., 97, 94-113. https://doi.org/10.1016/j.enganabound.2018.09.013.
- Yildirim, S. (2020), "Free vibration analysis of sandwich beams with functionally-graded-cores by complementary functions method", AIAA J., 58(12), 5431-5439. https://doi.org/10.2514/1.J059587.
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
- Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1748053.
- Zhang, Z.H., Yang, Z.J. and Li, J.H. (2016), "An adaptive polygonal scaled boundary finite element method for elastodynamics", Int. J. Comput. Meth., 13(02), 164001. https://doi.org/10.1142/S0219876216400156.
- Zhong, Z. and Yu, T. (2006), "Two-dimensional analysis of functionally graded beams", AIAA J., 44(12), 3160-3160. https://doi.org/10.2514/1.26674.
- Zhu, H. and Sankar, B.V. (2007), "Analysis of sandwich TPS panel with functionally graded foam core by Galerkin method", Compos. Struct., 77(3), 280-287. https://doi.org/10.1016/j.compstruct.2005.07.005.