DOI QR코드

DOI QR Code

Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models

  • Bouarroudj, Mohammed A. (Department of Civil Engineering, University of Larbi Ben M'Hidi) ;
  • Boudaoud, Zeineddine (Department of Civil Engineering, University of Larbi Ben M'Hidi)
  • Received : 2021.03.22
  • Accepted : 2021.10.02
  • Published : 2022.01.25

Abstract

This study highlights the accuracy of several single strut models to predict the global response of infilled reinforced concrete (R/C) frames. To this aim, six experimental tests are selected to calibrate the numerical modeling. The width of the diagonal strut is calculated using several macro models from the literature. The mechanical properties of the diagonal strut are determined by using two methods: (a) by subtracting the bare frame response from that of the infilled frame, and (b) by calculating the axial strength in the diagonal direction. A combination between the different width and the axial force models is carried out to study the effects of each parameter on global response. Non-linear pushover analyses are conducted using SAP2000. The results indicate the accuracy of the macro-modeling approach to predict the behavior of the infilled frames.

Keywords

References

  1. ACI 530-13 (2013), Building Code Requirements for Masonry Structures (TMS 402-13/ACI 530-13/ASCE 5-13), The Masonry Society, Boulder, CO., Longmont, USA.
  2. Agency, F.E.M. (1998), Fema 306: Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Federal Emergency Management Agency, Washington, DC, USA.
  3. Amato, G., Cavaleri, L., Fossetti, M. and Papia, M. (2008), "Infilled frames: Influence of vertical loads on the equivalent diagonal strut model", Procedings of 14th WCEE, Beijing, China.
  4. Anderson, D. and Brzev, S. (2009), Seismic Design Guide For Masonry Buildings, Vol. 22, Canadian Concrete Masonry Producers Association Toronto, ON.
  5. ASCE (2007), Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Verginia, USA.
  6. Asteris, P.G., Cavaleri, L., Di Trapani, F. and Sarhosis, V. (2016), "A macro-modelling approach for the analysis of infilled frame structures considering the effects of openings and vertical loads", Struct. Infrastr. Eng., 12(5), 551-566. https://doi.org/10.1080/15732479.2015.1030761.
  7. Asteris, P.G., Kakaletsis, D.J. and Chrysostomou, C. (2011), "Failure modes of in-filled frames", Elec. J. Struct. Eng., 11, 11-20. https://doi.org/10.56748/ejse.11139
  8. Basha, S.H. and Kaushik, H.B. (2016), "Suitability of fly ash brick masonry as infill in reinforced concrete frames", Mater. Struct., 49(9), 3831-3845. https://doi.org/10.1617/s11527-015-0757-5.
  9. Cavaleri, L., Fossetti, M. and Papia, M. (2005), "Infilled frames: Developments in the evaluation of cyclic behaviour under lateral loads", Struct. Eng. Mech., 21(4), 469-494. https://doi.org/10.12989/sem.2005.21.4.469.
  10. Committee, A.C.I. (1989), Building Code Requirements for Reinforced Concrete (ACI 318-89), American Concrete Institute, Farmington Hills, Michigan, USA.
  11. Committee, M.S.J. (2008), Building Code Requirements and Specification for Masonry Structures: Containing Building Code Requirements for Masonry Structures (TMS 402-08/ACI 530-08/ASCE 5-08), Specification for Masonry Structures (TMS 602-08/ACI 530.1-08/ASCE 6-08) and Companion Com, Masonry Society, Masonry Standards Joint Committee, Reston, Virginia, USA.
  12. Committee, M.S.J. (2013), Building Code Requirements for Masonry Structures (TMS 402-13/ACI 530-13/ASCE 5-13), The Masonry Society, Boulder, CO., Longmont, USA.
  13. Council, B.S.S. (2000), "Prestandard and commentary for the seismic rehabilitation of buildings", Report FEMA-356, Federal Emergency Management Agency, Washington, DC, USA.
  14. Crisafulli, F.J. and Carr, A.J. (2007), "Proposed macro-model for the analysis of infilled frame structures", Bull. NZ Soc. Earthq. Eng., 40(2), 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77.
  15. Crisafulli, F.J. (1997), "Seismic behaviour of reinforced concrete structures with masonry infills", Ph.D. Disseration, University of Canterbury, Christchurch, New Zealand.
  16. De Risi, M.T., Del Gaudio, C., Ricci, P. and Verderame, G.M. (2018), "In-plane behaviour and damage assessment of masonry infills with hollow clay bricks in RC frames", Eng. Struct., 168, 257-275. https://doi.org/10.1016/j.engstruct.2018.04.065.
  17. Decanini, L.D. and Fantin, G.E. (1986), "Modelos simplificados de la mamposteria incluida en porticos", Caracteristicas de Stiffnessy Resistencia Lateral En Estado Limite. Jornadas Argentinas de Ingenieria Estructural, 2, 817-836.
  18. El-Dakhakhni, W.W., Elgaaly, M. and Hamid, A.A. (2003), "Three-strut model for concrete masonry-infilled steel frames", J. Struct. Eng., 129(2), 177-185. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(177).
  19. Furtado, A., Rodrigues, H. and Arede, A. (2015), "Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees", Int. J. Adv. Struct. Eng. (IJASE), 7(2), 117-127. https://doi.org/10.1007/s40091-015-0086-5.
  20. Hendry, A.W. (1990), "Masonry materials and the effect of workmanship", Proceeding of 3rd International Seminar on Structural Masonry for Developing Countries, University of Edinburgh, Scotland.
  21. Hendry, A.W. (1981), Structural Brickwork, The Macmillan Press LTD, London, UK.
  22. Holmes, M. (1961), "Steel frames with brickwork and concrete infilling", Proc. Inst. Civil Eng., 19(4), 473-478.
  23. Inel, M. and Ozmen, H.B. (2006), "Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings", Eng. Struct., 28(11), 1494-1502. https://doi.org/10.1016/j.engstruct.2006.01.017.
  24. Kakaletsis, D. and Karayannis, C. (2007), "Experimental investigation of infilled R/C frames with eccentric openings", Struct. Eng. Mech., 26(3), 231-250. https://doi.org/10.12989/sem.2007.26.3.231.
  25. Liauw, T.C. and Kwan, K.H. (1984), "Nonlinear behaviour of non-integral infilled frames", Comput. Struct., 18(3), 551-560. https://doi.org/10.1016/0045-7949(84)90070-1.
  26. Liberatore, L., Noto, F., Mollaioli, F. and Franchin, P. (2018), "In-plane response of masonry infill walls: Comprehensive experimentally-based equivalent strut model for deterministic and probabilistic analysis", Eng. Struct., 167, 533-548. https://doi.org/10.1016/j.engstruct.2018.04.057.
  27. Lourenco, P.B. and Rots, J.G. (1997), "Multisurface interface model for analysis of masonry structures", J. Eng. Mech., 123(7), 660-668. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660).
  28. Mainstone, R.J. (1974), "On the stiffness and strength of in-filled frames", Proc. Supplement, Trans. of Inst. of Civil Eng., State Univ. of New York.
  29. Mainstone, R.J. and Weeks, G.A. (1970), "27.-The influence of a bounding frame on the racking stiffnesses and strengths of brick walls", Proceedings of the 2nd International Brick Masonry Conference, Building Research Establishment, Watford, England, April.
  30. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Observed stress-strain behavior of confined concrete", J. Struct. Eng., 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827).
  31. Mehrabi, A.B., Benson Shing, P., Schuller, M.P. and Noland, J.L. (1996), "Experimental evaluation of masonry-infilled RC frames", J. Struct. Eng., 122(3), 228-237. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(228).
  32. Moghaddam, H. and Dowling, P.J. (1988), "Earthquake resistant design of brick infilled frames", Brick Block Masonry. (8 Th IBMAC) London, Elsevier Appl. Sci., 2, 774-784.
  33. Mohamed, H. and Romao, X. (2018), "Robust calibration of macro-models for the in-plane behavior of masonry infilled RC frames", J. Earthq. Eng., 1-27. https://doi.org/10.1080/13632469.2018.1517703.
  34. Mohammadi, M. and Emami, S.M.M. (2019), "Multi-bay and pinned connection steel infilled frames; an experimental and numerical study", Eng. Struct., 188, 43-59. https://doi.org/10.1016/j.engstruct.2019.03.028.
  35. Taque, N., Leandro, C., Guido, C. and Enrico, S. (2015), "Masonry infilled frame structures: state-of-the-art review of numerical modelling", Earthq. Struct., 8(3), 733-759. https://doi.org/10.12989/eas.2015.8.1.895.
  36. Paulay, T. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc., Canada.
  37. Polyakov, S.V. (1960), "On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall", Transl. Earthq. Eng., 2(3), 36-42.
  38. Radic, I., Markulak, D. and Sigmund, V. (2016), "Analytical modelling of masonry-infilled steel frames", Tehnicki Vjesnik/Technical Gazette, 23(1), 115-127. https://doi.org/10.17559/TV-20150528133754.
  39. Rodrigues, H., Varum, H. and Costa, A. (2010), "Simplified macro-model for infill masonry panels", J. Earthq. Eng., 14(3), 390-416. https://doi.org/10.1080/13632460903086044.
  40. Saneinejad, A. and Hobbs, B. (1995), "Inelastic design of infilled frames", J. Struct. Eng., 121(4), 634-650. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(634).
  41. Sinha, B.P. and Pedreschi, R. (1983), "Compressive strength and some elastic properties of brickwork", Int. J. Mason. Constr., 3(1), 19-27.
  42. Smith, B.S. (1962), "Lateral stiffness of infilled frames", J. Struct. Div., 88(6), 183-226. https://doi.org/10.1061/JSDEAG.0001061.
  43. Turgay, T., Durmus, M.C., Binici, B. and Ozcebe, G. (2014), "Evaluation of the predictive models for stiffness, strength, and deformation capacity of RC frames with masonry infill walls", J. Struct. Eng., 140(10), 6014003. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001069.
  44. Van, T.C. and Lau, T.L. (2020), "Experimental evaluation of reinforced concrete frames with unreinforced masonry infills under monotonic and cyclic loadings", Int. J. Civil Eng., 1-19. https://doi.org/10.1007/s40999-020-00576-7.
  45. Yekrangnia, M. and Mohammadi, M. (2017), "A new strut model for solid masonry infills in steel frames", Eng. Struct., 135, 222-235. https://doi.org/10.1016/j.engstruct.2016.10.048.