DOI QR코드

DOI QR Code

EC-RPL to Enhance Node Connectivity in Low-Power and Lossy Networks

저전력 손실 네트워크에서 노드 연결성 향상을 위한 EC-RPL

  • Received : 2022.08.19
  • Accepted : 2022.11.18
  • Published : 2022.12.30

Abstract

The Internet Engineering Task Force (IETF) has standardized RPL (IPv6 Routing Protocol for Low-power Lossy Network) as a routing protocol for Low Power and Lossy Networks (LLNs), a low power loss network environment. RPL creates a route through an Objective Function (OF) suitable for the service required by LLNs and builds a Destination Oriented Directed Acyclic Graph (DODAG). Existing studies check the residual energy of each node and select a parent with the highest residual energy to build a DODAG, but the energy exhaustion of the parent can not avoid the network disconnection of the children nodes. Therefore, this paper proposes EC-RPL (Enhanced Connectivity-RPL), in which ta node leaves DODAG in advance when the remaining energy of the node falls below the specified energy threshold. The proposed protocol is implemented in Contiki, an open-source IoT operating system, and its performance is evaluated in Cooja simulator, and the number of control messages is compared using Foren6. Experimental results show that EC-RPL has 6.9% lower latency and 5.8% fewer control messages than the existing RPL, and the packet delivery rate is 1.7% higher.

IETF(Internet Engineering Task Force)는 저전력 손실 네트워크 환경인 LLNs(Low power and Lossy Networks)의 라우팅 프로토콜로 RPL(IPv6 Routing Protocol for Low-power Lossy Network)을 표준화하였다. RPL은 LLNs에서 요구하는 서비스에 적합한 OF(Objective Function)를 통해 경로를 생성하고 DODAG(Destination Oriented Directed Acyclic Graph)를 구축한다. 기존 연구들은 각 노드의 잔여 에너지를 확인하여 잔여 에너지가 높은 부모를 선택하여 DODAG를 구축하지만 실제 부모 노드가 에너지를 전부 소모하기 전에 DODAG를 떠나고 새로운 DODAG를 구축하는 방식은 없었다. 따라서 본 논문에서는 DODAG에 가입된 노드의 에너지 잔량이 지정된 에너지 한계점 이하로 떨어지면 그 노드가 DODAG를 미리 떠나는 EC-RPL(Enhanced Connectivity-RPL)을 제안한다. 제안된 프로토콜을 오픈소스 사물인터넷 운영체제인 Contiki에서 제공하는 Cooja 시뮬레이터를 사용하여 그 성능을 평가하고 Foren6를 활용하여 제어 메시지 수를 비교한다. 실험 결과 EC-RPL이 기존 RPL 보다 6.9% 낮은 지연시간과 5.8% 낮은 제어 메시지를 사용하며, 패킷 전달 비율은 1.7% 높은 것을 확인할 수 있다.

Keywords

Acknowledgement

이 논문은 2021년도 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1F1A1048179)

References

  1. Adam Dunkels 2003, github, viewed 27 March 2022,
  2. CETIC 2013, Foren6, a 6LoWPAN Diagnosis Tool, viewed 31 March 2022,
  3. Cui, H., & Kang, S. H. (2020). Control Message Transmission Radius for Energy-efficient Clustering in Large Scale Wireless Sensor Networks. Journal of the Korea Industrial Information Systems Research, 25(1), 1-11.
  4. Gnawali, O., and Levis, P. (2012). RFC 6719: The minimum rank with hysteresis objective function. Internet Engineering Task Force (IETF) Request For Comments.
  5. Jung, H. and Yoo, S. (2022). GRU-based Adaptive Data Rate Control Algorithm Considering the Mobility of LoRa Devices. Journal of Institute of Control, Robotics and Systems, 28(6), 640-647. https://doi.org/10.5302/J.ICROS.2022.22.0059
  6. Internet Engineering Task Force 2007, Internet Engineering Task Force , viewed 30 March 2022,
  7. Internet Engineering Task Force 2012, Internet Engineering Task Force , viewed 25 March 2022,
  8. Khelifi, N., Oteafy, S., Hassanein, H., & Youssef, H. (2015, August). Proactive maintenance in RPL for 6LowPAN. In 2015 International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 993-999). IEEE.
  9. Kim, T. J., and Joung, J. (2019). Node Balanced CNC Routing Protocol for Low Power and Lossy Networks. The Journal of the Institute of Internet, Broadcasting and Communication, 19(5), 123-128.
  10. Kim, Y. S, Park, Y. S, & Baek, D. K. (2022). High Power Energy Harvesting Systems for IoT Sensor Nodes Systems. Journal of the Korea Industrial Information Systems Research, 27(4), 29-36.
  11. Lamaazi, H., and Benamar, N. (2018). OF-EC: A novel energy consumption aware objective function for RPL based on fuzzy logic. Journal of Network and Computer Applications, 117, 42-58.
  12. Lee, J. and Yoo, S. (2020). Adaptive ADP-RPL Avoiding Unstable Nodes in Low Power IoT Networks. Journal of Institute of Control, Robotics and Systems, 26(2), 92-99. https://doi.org/10.5302/J.ICROS.2020.19.0221
  13. Lee, J. and Yoo, S. (2020). Wireless Networked System for Transmission Path Self-Calibration of Laser Equipment. IEMEK Journal of Embedded Systems and Applications, 15(2), 79-85. https://doi.org/10.14372/IEMEK.2020.15.2.79
  14. Regents of the University of California 2010, Regents of the University of California, viewed 28 March 2022,
  15. TinyOS Alliance 2000, github, viewed 28 March 2022,
  16. Thubert, P. (2012). Objective function zero for the routing protocol for low-power and lossy networks (RPL).
  17. Touzene, A., Al Kalbani, A., Day, K., and Al Zidi, N. (2020, June). Performance Analysis of a New Energy-Aware RPL Routing Objective Function for Internet of Things. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE.
  18. Yoo, S. E. (2012). A Software Framework for Verifying Sensor Network Operations and Sensing Algorithms. Journal of the Korea Industrial Information Systems Research, 17(1), 63-71. https://doi.org/10.9723/jksiis.2012.17.1.063
  19. Yang, Z., Gu, Y., Wu, Z., Zhao, N., and Wang, X. (2017, September). An energy-efficient routing protocol for cognitive radio enabled AMI networks in smart grid. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (pp. 1-5). IEEE.
  20. Zolertia S.L. 2003, Zolertia, viewed 26 March 2022,