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GROTHENDIECK GROUP FOR SEQUENCES

Xuan Yu

Abstract. For any category with a distinguished collection of sequences,

such as n-exangulated category, category of N-complexes and category

of precomplexes, we consider its Grothendieck group and similar results
of Bergh-Thaule for n-angulated categories [1] are proven. A classifica-

tion result of dense complete subcategories is given and we give a formal
definition of K-groups for these categories following Grayson’s algebraic

approach of K-theory for exact categories [4].

1. Introduction

Algebraic K-theory, developed by Quillen, Waldhausen (among others), are
homotopy groups of a space (or spectra) to a given category. In particular, the
K0 group of K-theory, i.e., the Grothendieck group, is one of the most funda-
mental and studied among all K-groups. For example, a famous classification
theorem of Thomason states that there is a one-to-one correspondence between
dense triangulated subcategories of a triangulated category and subgroups of
its Grothendieck group. Later, Matsui gave an analogous result for exact cate-
gories with a (co)generator [9] and a long list of similar classification results via
the Grothendieck group were proved to hold for various categories appeared in
higher homological algebra.

Higher homological algebra and higher dimensional Auslander-Reiten the-
ory attract lots of attention in recent years, partly because of the fundamental
role the theory of n-cluster tilting subcategories of exact and triangulated cate-
gories plays. The theory of (n+2)-angulated categories [3] and n-abelian/exact
categories [8] were introduced and the above classification result is generalized
to (n+ 2)-angulated categories in [1].

Moreover, a simultaneous generalization of exact categories and triangu-
lated categories called extriangulated categories is introduced by Nakaoka-
Palu [10] so many similar results can be unified and extended to the extri-
angulated setting. Further, the higher version of extriangulated categories,
the n-exangulated categories, was defined by Herschend-Liu-Nakaoka [7] as a
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unification of (n + 2)-angulated and n-abelian/exact categories. The dense
classification theorem via Grothendieck group was extended to n-exangulated
categories by Haugland in [6].

The aforementioned categories all comes with a distinguished collection of
sequences form by morphisms in the underlying categories, for example, con-
flations in exact categories, distinguished triangles in triangulated categories,
conflations in extriangulated categories, n − Σ sequences in n-angulated cate-
gories, etc. and the classification results are in fact formal consequences of the
following common properties of the distinguished collections: let C be a cate-
gory with a zero object, together with a collection of length (n+ 1) sequences

F = {X0 −→ X1 −→ · · · −→ Xn+1 : Xi objects of C}

satisfying the following properties:

(1) 0 −→ 0 −→ · · · −→ 0 ∈ F ;

(2) if A ∼= B ∈ C, then 0 −→ · · · −→ A
∼=−→ B −→ 0 −→ · · · −→ 0 belongs to F ,

with A
∼=−→ B placed anywhere in the sequence;

(3) the direct sum of any two sequences in F also belongs to F .

The first purpose of the current paper is to write down the common properties
and results shared by all such categories and provide proofs all at once. We
call the category (C,F) a category of n-sequences and this is merely a working
language for all aforementioned (and possible other) categories with similar
distinguished collections (for example, category of N-complexes and category of
precomplexes altogether). We do not claim this obvious collection of categories
to have any other interesting properties, at least not in the current paper.

A sequence in F is called good and the morphisms differentials (although
the morphisms don’t need to form a complex). We only consider categories of
n-sequences unless state otherwise so we will simply refer to these categories as
n-categories and denote it by C (notice that our n-category is different from the
notion of n-category in higher category theory). An exact functor F : C −→ D
of n-categories is a functor that takes zero object to zero object and good
sequences of C to good sequences of D.

Several existing results of above categories in (higher) homological algebra
only hold for categories where n is an odd integer because of the lack of an
explicit description of an inverse element in the Grothendieck group. In fact the
Grothendieck group can be obtained as a group completion of a corresponding
monoid so there is a description of inverse elements but this naive description
will not help in the classification so results in the current paper also require n
to be an odd integer.

Finally, in the last section, we take Grayson’s algebraic description of K-
groups [4] as our definition of K-groups for n-categories. Notice that Grayson’s
approach is the first complete, pure algebraic description of the K-theory of
exact categories. We study basic properties of these K-groups and prove the
even Additivity Theorem for K-groups of these categories where n is an odd
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integer following the idea of Harris [5]. An integer n ≥ 1 is fixed throughout
this paper.

2. Grothendieck group

The Grothendieck group of an n-category is defined and studied following
ideas of Bergh-Thaule [1]. As usual, we only talk about small categories in
this paper as we are discussing about the Grothendieck group. Any pointed
category C comes with two trivial n-category structures, F to be the collection
of all n-sequences or F contains the minimal n-sequences generated from all
three conditions. These two structures are not necessarily the same. For ex-
ample, a classical module category with the collection of short exact sequences
is abelian (hence a category of 1-sequences) and it contains the minimal 1-
sequences structure. However, not all 1-sequences are short exact so the two
1-sequences structures are not the same. The Grothendieck group of the first
n-structure is trivial as long as HomC(X,Y ) 6= ∅ for any objects X,Y ∈ C.

2.1. Grothendieck group

As pointed out in [2, Definition 1.1.3.1], one can define the Grothendieck
group of any given small category C together with a collection of diagrams
c′ −→ c −→ c′′ in C. Usual properties like [0] = 0, [A] = [B] if A and B
are isomorphic and any object of K0(C) is represented as a difference of two
elements [A]− [B], all hold if the collection satisfies certain conditions.

Definition 2.1. Given an n-category C, let F (C) be the free abelian group on
the set of isomorphism classes 〈X〉 of objects X ∈ C. For any good sequence
X• : X0 −→ · · · −→ Xn+1 ∈ F , the Euler relation in F (C) is

χ(X•) := 〈X0〉 − 〈X1〉+ 〈X2〉 − · · ·+ (−1)n+1〈Xn+1〉.

Let R(C) be the subgroup of F (C) generated by the following set of elements

{χ(X•) : X• a good sequence} if n is odd,

{〈0〉} ∪ {χ(X•) : X• a good sequence} if n is even.

The Grothendieck group K0(C) of C is the quotient group F (C)/R(C). Given
an object X ∈ C, the residue class in K0(C) is denoted by [X].

Definition 2.2. Let C be an n-category, an additive function from C to an
abelian group G is a function f from the objects of C to G such that

f(X0)− f(X1) + f(X2)− · · ·+ (−1)n+1f(Xn+1) = 0 if n is odd,

f(0) = 0, f(X0)− f(X1) + f(X2)− · · ·+ (−1)n+1f(Xn+1) = 0 if n is even

for any good sequence X0 −→ X1 −→ · · · −→ Xn+1 in C.
Note that K0(C) is abelian (See Proposition 2.4(2)) and the function ϕ :

C −→ K0(C) where X 7→ [X] is by definition an additive function.
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Proposition 2.3 (Universal property). The Grothendieck group K0(C) satis-
fies the following universal property: for any additive function ψ : C −→ G, there
is a unique morphism of abelian groups θ : K0(C) −→ G such that θ ◦ ϕ = ψ,
i.e., the following diagram holds:

C
ψ //

ϕ

��

G

K0(C)
∃!θ

<<

Proof. First of all, define a map

θ̂ : F (C) −→ G

〈X〉 7→ ψ(X)

and extended by linearity.
This is a well-defined map. Indeed, suppose 〈X〉 = 〈Y 〉 in F (C), i.e., X ∼= Y

in C, there is a good sequence X
∼=−→ Y −→ 0 −→ · · · −→ 0, so ψ(X) = ψ(Y ) (ψ is

an additive function). Thus θ̂ induces a map on K0(C): for any good sequence

X0 −→ X1 −→ · · · −→ Xn+1, we have θ̂(〈X0〉 − 〈X1〉 + · · · + (−1)n+1〈Xn+1〉) =
ψ(X0)− ψ(X1) + · · ·+ (−1)n+1ψ(Xn+1) = 0 (again, because ψ is an additive
function). Denote the induced map on K0(C) by θ : K0(C) −→ G and it is clear
from the definition that the diagram commutes.

Uniqueness is immediate: suppose θ′ also makes the diagram commute (θ′ ◦
ϕ = ψ), then

θ′([X]) = θ′(ϕ(X)) = (θ′ ◦ ϕ)(X) = ψ(X) = (θ ◦ ϕ)(X) = θ([X]). �

We have the following proposition.

Proposition 2.4. Let C be an n-category and K0(C) its Grothendieck group.

(1) The element [0] is the zero element in K0(C).
(2) If X and Y are objects in C, then [X ⊕ Y ] = [X] + [Y ].
(3) Every element in K0(C) is of the form [X]−[Y ] for some objects X,Y ∈
C.

Proof. (1) If n is even, then [0] = 0 by definition. If n is odd, notice that we
have a good sequence

0 −→ 0 −→ · · · −→ 0 −→ 0

with odd number of zeros. The Euler relation of this sequence gives [0] = 0 in
K0(C).

(2) The direct sum of good sequences

X −→ X −→ 0 −→ 0 −→ · · · −→ 0,

0 −→ Y −→ Y −→ 0 −→ · · · −→ 0
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results to the good sequence

X −→ X ⊕ Y −→ Y −→ 0 −→ · · · −→ 0

so it immediate gives [X ⊕ Y ] = [X] + [Y ].
(3) Let x be an element in K0(C). If x = 0, then x = [0] by (1) and we

are done as [0] = [X] − [X] for any X. If x is nonzero, then there are non-
negative integers a1, . . . , ar, b1, . . . , bt and objects X1, . . . , Xr, Y1, . . . , Yt such
that x = a1[X1] + · · · + ar[Xr] − b1[Y1] − · · · − bt[Yt] as the Grothendieck
group is the free abelian group generated by isomorphism classes of objects in
C. Therefore by (2), we can combine these summands into x = [Xa1

1 ⊕ · · · ⊕
Xar
r ]− [Y b11 ⊕ · · · ⊕ Y

bt
t ]. �

2.2. Basic properties of the Grothendieck group

Results we are about to prove are slight generalizations of those discussed
in Bergh-Thaule [1]. Once we proved everything, similar results follow imme-
diately for n-categories.

Definition 2.5. C an n-category, define relations ∼i on the set of objects (one
for each i, between 0 and n+ 1) to be: for any two objects X,Y ∈ C, X ∼i Y
if there are two good sequences

A0 −→ · · · −→ X ⊕Ai −→ · · · −→ An+1,

A0 −→ · · · −→ Y ⊕Ai −→ · · · −→ An+1

for some objects A0, . . . , An+1.

Note that if X ∼= Y , we have X ∼i Y because of the good sequences

0 −→ · · · −→ X
∼=−→ Y −→ · · · −→ 0,

0 −→ · · · −→ Y −→ Y −→ · · · −→ 0.

Also, recall for any commutative monoid S, elements of its group completion
G(S) are equivalence classes of pairs (s, s′) with s, s′ ∈ S and the equivalence
relation is defined to be (s, s′) ∼ (t, t′) if and only if there is some u ∈ S
such that s+ t′ + u = s′ + t+ u in S. Denote the equivalence class of (s, s′) by
[(s, s′)] and the group structure of G(S) is defined by the rule [(s, s′)]+[(t, t′)] =
[(s+ s′, t+ t′)].

Proposition 2.6 (cf. [1, Proposition 2.3]). Let C be an n-category. Then

(1) The relation defined above is an equivalence relation.
(2) The set πi of equivalence classes {X}i of objects in C forms a commu-

tative monoid with addition {X}i + {Y }i := {X ⊕ Y }i.
(3) Denote the group completion of πi by G(πi), then the groups G(πi) and

K0(C) are isomorphic.
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Proof. (1) X ∼i X and X ∼i Y ⇒ Y ∼i X are clear. For the condition:
X ∼i Y and Y ∼i Z ⇒ X ∼i Z, note that X ∼i Y means there are objects
A0, . . . , An+1 and good sequences

A0 −→ · · · −→ X ⊕Ai −→ · · · −→ An+1,

A0 −→ · · · −→ Y ⊕Ai −→ · · · −→ An+1.

Similarly, Y ∼i Z means there are objects B0, . . . , Bn+1 and good sequences

B0 −→ · · · −→ Y ⊕Bi −→ · · · −→ Bn+1,

B0 −→ · · · −→ Z ⊕Bi −→ · · · −→ Bn+1.

Take the direct sum of the 1st and the 3rd, and similarly direct sum of the 2nd
and the 4th sequences we get:

A0 ⊕B0 −→ · · · −→ (X ⊕Ai)⊕ (Y ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

= A0 ⊕B0 −→ · · · −→ X ⊕ (Ai ⊕ Y ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

and

A0 ⊕B0 −→ · · · −→ (Y ⊕Ai)⊕ (Z ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

= A0 ⊕B0 −→ · · · −→ Z ⊕ (Ai ⊕ Y ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

and this shows X ∼i Z.
(2) The addition {X}i + {Y }i := {X ⊕ Y }i is well-defined. Indeed, for

X ∼i X ′ and Y ∼i Y ′, we have X ⊕ Y ∼i X ′ ⊕ Y ′ if we re-group the above
two good sequences in the following way:

A0 ⊕B0 −→ · · · −→ (X ⊕Ai)⊕ (Y ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

= A0 ⊕B0 −→ · · · −→ (X ⊕ Y )⊕ (Ai ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

and

A0 ⊕B0 −→ · · · −→ (X ′ ⊕Ai)⊕ (Y ′ ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1

= A0 ⊕B0 −→ · · · −→ (X ′ ⊕ Y ′)⊕ (Ai ⊕Bi) −→ · · · −→ An+1 ⊕Bn+1.

The part that πi is a commutative monoid is immediate.
(3) First, we will show that the Euler relations hold for the monoid πi. This

is a slight modification of Bergh-Thaule’s proof. For any good sequence

X0 −→ X1 −→ · · · −→ Xn+1

we can obtain two good sequences

X0 −→
⊕
k≤1

Xk −→
⊕
k≤2

Xk −→ · · · −→
⊕
k≤i−1

Xk −→
⊕
odd

Xk −→
⊕
k≥i+1

Xk −→ · · · −→
⊕
k≥n

Xk −→ Xn+1,

X0 −→
⊕
k≤1

Xk −→
⊕
k≤2

Xk −→ · · · −→
⊕
k≤i−1

Xk −→
⊕
even

Xk −→
⊕
k≥i+1

Xk −→ · · · −→
⊕
k≥n

Xk −→ Xn+1
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by following: suppose i is odd and n is also odd (these assumptions are only
needed so that we have a more convenient way to phrase the argument), con-
sider following good sequences:

0 // X∗ // X∗ // 0 // 0 // 0 // · · · // 0 // 0 // · · · // 0 // 0

0 // 0 // X∗ // X∗ // 0 // 0 // · · · // 0 // 0 // · · · // 0 // 0

0 // 0 // 0 // X∗ // X∗ // 0 // · · · // 0 // 0 // · · · // 0 // 0

0 // 0 // 0 // 0 // X∗ // X∗ // · · · // 0 // 0 // · · · // 0 // 0

...

0 // 0 // 0 // · · · // X∗ // X∗ // 0 // 0 // 0 // · · · // 0 // 0

0 // 0 // 0 // · · · // 0 // X∗ // X∗ // 0 // 0 // · · · // 0 // 0

X0 // X1 // X2 // · · · // Xi−2 // Xi−1 // Xi // Xi+1 // Xi+2 // · · · // Xn // Xn+1

0 // 0 // 0 // · · · //// 0 // 0 // X∗ // X∗ // 0 // · · · // 0 // 0

0 // 0 // 0 // · · · //// 0 // 0 // 0 // X∗ // X∗ // · · · // 0 // 0

...

0 // 0 // 0 // · · · //// 0 // 0 // 0 // 0 // · · · // X∗ // X∗ // 0

∗ = 0

∗ = 1

∗ = 0, 2

∗ = 1, 3

...

∗ = 0, 2, 4, . . . , i− 3

∗ = 1, 3, . . . , i− 2

∗ = i+ 2, i+ 4, . . . , n

∗ = i+ 3, i+ 5, . . . , n+ 1

...

∗ = n+ 1.

The direct sum of above gives

X0 −→
⊕
k≤1

Xk −→
⊕
k≤2

Xk −→ · · · −→
⊕
k≤i−1

Xk −→
⊕
odd

Xk −→
⊕
k≥i+1

Xk −→ · · · −→
⊕
k≥n

Xk −→ Xn+1.

Similarly, the direct sum of the following good sequences

X∗ // X∗ // 0 // 0 // · · · //// 0 // 0 // 0 // 0 // · · · // 0 // 0 // 0

0 // X∗ // X∗ // 0 // · · · //// 0 // 0 // 0 // 0 // · · · // 0 // 0 // 0

0 // 0 // X∗ // X∗ // · · · //// 0 // 0 // 0 // 0 // · · · // 0 // 0 // 0

...

∗ = 0

∗ = 1

∗ = 0, 2

...
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0 // 0 // 0 // 0 // · · · // X∗ // X∗ // 0 // 0 // · · · // 0 // 0 // 0

0 // 0 // 0 // 0 // · · · // 0 // X∗ // X∗(i)
// 0 // · · · // 0 // 0 // 0

0 // 0 // 0 // 0 // · · · // 0 // 0 // X∗(i)
// X∗ // · · · // 0 // 0 // 0

0 // 0 // 0 // 0 // · · · // 0 // 0 // 0 // X∗ // · · · // 0 // 0 // 0

...

0 // 0 // 0 // 0 // · · · // 0 // 0 // 0 // 0 // · · · // X∗ // X∗ // 0

0 // 0 // 0 // 0 // · · · // 0 // 0 // 0 // 0 // · · · // 0 // X∗ // X∗

∗ = 1, 3, . . . , i− 2

∗ = 0, 2, . . . , i− 1

∗ = i+ 1, i+ 3, . . . , n+ 1

∗ = i+ 2, i+ 4, . . . , n

...

∗ = n

∗ = n+ 1

results to

X0 −→
⊕
k≤1

Xk −→
⊕
k≤2

Xk −→ · · · −→
⊕
k≤i−1

Xk −→
⊕
even

Xk −→
⊕
k≥i+1

Xk −→ · · · −→
⊕
k≥n

Xk −→ Xn+1.

The only difference of the above two direct sums is the ith term and by defini-
tion this means exactly (X1 ⊕X3 ⊕ · · · ) ∼i (X0 ⊕X2 ⊕ · · · ) hence

{X1 ⊕X3 ⊕ · · · }i = {X0 ⊕X2 ⊕ · · · }i
⇔ {X1}i + {X3}i + · · · = {X0}i + {X2}i + · · ·
⇔ {X0}i − {X1}i + {X2}i − {X3}i + · · · = 0

so the Euler relation holds for any good sequence.
It remains to prove that K0(C) and G(πi) are isomorphic groups. Notice

that there is a well-defined map {−}i : C −→ πi where X 7→ {X}i (X ∼= Y =⇒
{X}i = {Y }i), compose this with the structure map of group completion:

l : πi −→ G(πi)

{X}i 7→ [({X}i, 0)].

The resulting composition is an additive function as

[({X0}i, 0)] + [({X2}i, 0)] + · · · = [({X1}i, 0)] + [({X3}i, 0)] + · · · .
Indeed, LHS = [({X0}i+{X2}i+· · · , 0)] = [({X1}i+{X3}i+· · · , 0)] = RHS,
where the middle equality is exactly the Euler relation, that is,

{X0}i + {X2}i + · · · = {X1}i + {X3}i + · · ·
for any good sequence X0 −→ · · · −→ Xn+1. Therefore, there is a unique group
homomorphism g : K0(C) −→ G(πi) by Proposition 2.3.

Define a map

l′ : πi −→ K0(C)
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{X}i 7→ [X].

It is well-defined and a monoid homomorphism. Indeed, for {A}i = {A′}i, we
have good sequences

X0 −→ · · · −→ A⊕Xi −→ · · · −→ Xn+1,

X0 −→ · · · −→ A′ ⊕Xi −→ · · · −→ Xn+1,

then in K0(C), Euler relations of the above two good sequences result to

[A⊕Xi] = [A′ ⊕Xi] =⇒ [A] = [A′].

It’s a monoid homomorphism because l′({A}i + {B}i) = l′({A⊕ B}i) = [A⊕
B] = [A] + [B] and l′({0}i) = [0].

Consider the abelian group K0(C) and monoid homomorphism l′, there is a
unique group homomorphism h : G(πi) −→ K0(C) by the universal property of
group completion.

In the following commutative diagram:

K0(C)

g

��
C

77

{−}i
// πi

l′

<<

l
//

l′ ""

G(πi)

h

��
K0(C)

by the universal property (Proposition 2.3), we deduce that hg = 1. Similarly,
from the following commutative diagram

πi
l //

l′

""

l

��

G(πi)

h

��
K0(C)

g

��
G(πi)

we deduce that gh = 1 so G(πi) and K0(C) are isomorphic. �

Corollary 2.7 (cf. [1, Corollary 2.4]). Let C be an n-category. Then the fol-
lowing are equivalent:

(1) [X] = [({X1}i, {X2}i)] = [({Y1}i, {Y2}i)] = [Y ] in K0(C).
(2) There exist objects U0, . . . , Un+1 and good sequences in C

U0 −→ · · · −→ X1 ⊕ Y2 ⊕ U i −→ · · · −→ Un+1,

U0 −→ · · · −→ Y1 ⊕X2 ⊕ U i −→ · · · −→ Un+1.
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Proof. (1) =⇒ (2): Given [({X1}i, {X2}i)] = [({Y1}i, {Y2}i)], then by defini-
tion, there is an object {C}i ∈ πi such that in πi,

{X1}i + {Y2}i + {C}i = {Y1}i + {X2}i + {C}i,
i.e.,

{X1 ⊕ Y2 ⊕ C}i = {Y1 ⊕X2 ⊕ C}i
so by definition, there are objects U0, . . . , U i−1, U, U i+1, . . . , Un+1 ∈ C and
good sequences

U0 −→ · · · −→ X1 ⊕ Y2 ⊕ C ⊕ U −→ · · · −→ Un+1,

U0 −→ · · · −→ Y1 ⊕X2 ⊕ C ⊕ U −→ · · · −→ Un+1.

Now define U i := U ⊕ C.
(2) =⇒ (1): Given two good sequences as above

U0 −→ · · · −→ X1 ⊕ Y2 ⊕ U i −→ · · · −→ Un+1,

U0 −→ · · · −→ Y1 ⊕X2 ⊕ U i −→ · · · −→ Un+1.

In the proof of Proposition 2.6(3), we show that the Euler relation with respect
to {−}i holds for any good sequence, therefore

{U0}i − · · ·+ (−1)i{X1 ⊕ Y2 ⊕ U i}i + · · ·+ (−1)n+1{Un+1}i = 0,

{U0}i − · · ·+ (−1)i{Y1 ⊕X2 ⊕ U i}i + · · ·+ (−1)n+1{Un+1}i = 0

=⇒ {X1 ⊕ Y2 ⊕ U i}i = {Y1 ⊕X2 ⊕ U i}i
=⇒ {X1}i + {Y2}i + {U i}i = {Y1}+ {X2}+ {U i}i

hence [({X1}i, {X2}i)] = [({Y1}i, {Y2}i)]. �

3. Classification of dense subcategories

Let C be an n-category. Then a full additive subcategory G of C is an n-
generator (resp. n-cogenerator) of C if for each object A ∈ C, there is a good
sequence

A′ −→ G1 −→ · · · −→ Gn −→ A

(resp. A −→ G1 −→ · · · −→ Gn −→ A′)

in C with Gi ∈ G for all i. This definition obviously comes from the one
in [6] which is in turn motivated by the one in [9, 11]. A trivial example of
an n-(co)generator is given by choosing G to be the entire category C. Also,
categories with enough projectives or injectives provide natural examples of
n-(co)generators. The notion of projective/injective objects and what it means
for an n-category to have enough projective/injective objects have an obvious
extension to n-categories. Indeed, an object P is projective if for any good

sequence X0
d0−→ X1 −→ · · · −→ Xn

dn−→ Xn+1 and morphism f : P −→ Xn+1,
there exists a morphism g : P −→ Xn such that dn ◦ g = f and C is said to
has enough projectives if for each object A ∈ C, there exists a good sequence
A′ −→ P1 −→ · · · −→ Pn −→ A in C with Pi projective for all i.



GROTHENDIECK GROUP FOR SEQUENCES 181

The subcategories to be classified are following:

Definition 3.1. Let S be a full subcategory of C. Then it’s

(1) dense in C if each object in C is a direct summand of an object of S.
(2) complete if given any good sequence in C with n+ 1 objects in S, then

so is the last object.

One checks directly that Haugland’s arguments [6] work for n-categories so
the classification result follows immediately.

Theorem 3.2. Let C be an n-category with n is an odd integer, G an n-
(co)generator and S a dense complete subcategory. Then there is a one-to-one
correspondence

{subgroups of K0(C) containing HG}
f //
{dense complete subcategories of C containing G}

goo

H � // {A ∈ C : [A] ∈ H}

〈[A] ∈ K0(C) : A ∈ S〉 S,�oo

where HG := 〈[G] ∈ K0(C) : G ∈ G〉 is the subgroup of K0(C) generated by
elements whose representations belongs to G.

Define a relation ∼ on the set of isomorphism classes of objects in C by
〈A〉 ∼ 〈B〉 if and only if A⊕ SA ∼= B ⊕ SB for some objects SA, SB ∈ S. It is
easy to see that this is an equivalence relation and denote by GS the quotient
of the isomorphism classes of objects in C by ∼. Elements in GS are denoted
by {A}.

Lemma 3.3.

(1) An object A ∈ C is contained in S if and only if {A} = {0} in GS .
(2) GS is an abelian group with addition {A} + {B} := {A ⊕ B} and the

identity element is {0}.
(3) There is a well-defined group isomorphism

K0(C)/g(S) −→ GS

[A] + g(S) 7→ {A}
In particular, A ∈ C is contained in S if and only if [A] ∈ g(S).

Proof. It is straightforward to check that ∼ is an equivalence relation.
(1) If A ∈ S, then {A} = {0} as we have A ⊕ 0 ∼= 0 ⊕ A for 0, A ∈ S.

Conversely, we have A⊕SA ∼= S0 for some SA, S0 ∈ S so there is the following
good sequence

A −→ A⊕ SA −→ SA −→ 0 −→ · · · −→ 0

with the last n+ 1 terms objects in S. Therefore A ∈ S as S is complete.
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(2) Again, it’s straightforward to show that + is a well-defined operation
and + is commutative, associative with the {0} being the identity element.
For any A ∈ C, there is an object A′ ∈ C such that A⊕A′ ∈ S (as S is dense),
therefore {A}+ {A′} = {0} and this means {A′} is the inverse of {A}.

(3) First, ϕ : K0(C) −→ GS [A] 7→ {A} is well-defined as it sends Euler
relations to zero. Indeed, for any good sequence X0 −→ X1 −→ · · · −→ Xn+1 in
C, we can form a new good sequence

X̄ −→
n+1⊕
i=1

(Xi ⊕X ′i) −→
n+1⊕
i=2

(Xi ⊕X ′i) −→ · · · −→
n+1⊕
i=n

(Xi ⊕X ′i) −→ Xn+1 ⊕X ′n+1

with X ′i objects in C that makes Xi⊕X ′i ∈ S and X̄ = X0⊕X ′1⊕X2⊕· · ·⊕Xn+1

exactly like Haugland in [6, Lemma 5.4]. From this sequence we conclude that
X̄ ∈ S so

{0} = {X̄} = {X0}+ {X ′1}+ {X2}+ · · ·+ {Xn+1}
= {X0} − {X1}+ {X2} − · · ·+ {Xn+1} in GS

so ϕ is well-defined.
It’s obvious that ϕ is a surjection so the only thing left is to show Ker(ϕ) =

g(S). It is immediate that g(S) ⊆ Ker(ϕ) by (1). Notice that every element in
K0(C) is of the form [X]− [Y ] for some objects X,Y ∈ C by Proposition 2.4(3).
Since G is an n-generator, there is a good sequence Y ′ −→ G1 −→ · · · −→ Gn −→ Y
in C with Gi ∈ G so [Y ] = −[Y ′] + [G1]− [G2] + · · ·− [Gn−1] + [Gn] as n is odd.
Therefore any element can be written as

[X]− [Y ] = [X] + [Y ′]− [G1] + [G2]− · · ·+ [Gn−1]− [Gn]

= [X ⊕ Y ′ ⊕G2 ⊕G4 ⊕ · · · ⊕Gn−1]− [G1 ⊕G3 ⊕ · · · ⊕Gn]

=: [A]− [G],

where A ∈ C and G ∈ G.
Now, for any element [A] − [G] ∈ Ker(ϕ), we have {0} = ϕ([A] − [G]) =

{A} − {G} = {A} as G ∈ G ⊆ S and this means A ∈ S as well, hence
[A]− [G] ∈ g(S).

This gives the isomorphism K0(C)/g(S) ∼= GS . �

Now we are ready to prove Theorem 3.2.

Proof. By definition g(S) is a subgroup containing HG and G ⊆ f(H). To see
that f(H) is a dense subcategory containing G, notice that there is a good
sequence A′ −→ G1 −→ · · · −→ Gn −→ A for any A ∈ C and this implies that
[A⊕A′] = [G1]− [G2] + · · · − [Gn−1] + [Gn] ∈ H as n is odd. For completeness
of f(H), we have [X0] − [X1] + · · · + (−1)n+1[Xn+1] = 0 ∈ H for any good
sequence X0 −→ · · · −→ Xn+1 so any n + 1 terms in this equation implies that
the last one must also be an element in H.

The inclusions gf(H) ⊆ H and S ⊆ fg(S) hold by definition so we only
need to show the inverse directions. For gf(H) ⊇ H, take [A] − [G] ∈ H (see
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the proof of (3) of last lemma), we have [A] ∈ H as [A] = ([A] − [G]) + [G]
and both [A] − [G] and [G] are elements of H and this implies that [A] − [G]
belongs to the subgroup generated by elements [X] with [X] ∈ H.

For S ⊆ fg(S), choose an element A ∈ fg(S), that is, [A] ∈ g(S) so (3) of
the above lemma tells us that A ∈ S. �

Therefore all Thomason type dense subcategories classification results are
formal consequence of the distinguished collection of good sequences for n-
categories with n an odd integer together with the existence of an n-(co)genera-
tor G. In particular, for the category of N -complexes and precomplexes, 0
is always a (co)generator so there are similar classification results for these
categories as well. Recall that for an additive category C and a fixed integer
N ≥ 2, an N -complex X• is a diagram

· · · d−→ Xi d−→ Xi+1 d−→ · · ·
with Xi ∈ C and dN = 0. A precomplex is nothing but a sequence of objects
connected by morphisms of the underlying category.

4. Grayson’s algebraic K-theory

Grayson’s recent approach to algebraic K-theory [4] defines all K-groups of
an exact category as the Grothendieck group of the associated exact category of
acyclic binary multicomplexes modulo relationships coming from “short exact
sequences” and diagonal acyclic binary multicomplexes. Therefore, if there is a
well-defined notion of K0 for a category with a “good” collection of diagrams,
one can apply Grayson’s construction in defining all K-groups for any such
category.

We use Grayson’s construction to give a definition of K-groups for n-categor-
ies and prove a naive even Additive Theorem at the end of this section.

Definition 4.1. Let C be an n-category, denote the category of bounded se-
quences of C by SC. Objects of SC are ordinary sequences of C and morphisms
are componentwise morphisms in C that make the obvious squares commute.

One can make SC into an n-category by declaring a sequence S0
• −→ S1

• −→
· · · −→ Sn+1

• to be good if S0
k −→ S1

k −→ · · · −→ Sn+1
k is good in C, for any k.

It’s easy to see that the sequence 0• −→ · · · −→ 0• is good and two sequences

A• and B• are isomorphic: A•
∼=
f
// B• if fk is an isomorphism for each k,

so condition (2) of Definition 2.1 is true. Finally, the direct sum of two good
sequences

S0
• −→ S1

• −→ · · · −→ Sn+1
• ,

T 0
• −→ T 1

• −→ · · · −→ Tn+1
•

in SC is good as the direct sum of

S0
k −→ S1

k −→ · · · −→ Sn+1
k ,
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T 0
k −→ T 1

k −→ · · · −→ Tn+1
k

is good in C, for each k.

Definition 4.2. A bounded acyclic sequence, in an n-category C is a bounded
sequence N• whose differentials factor through good sequences of C. That is,
the differentials factor as

· · · // Ni
di //

��

Ni−1 // · · ·

...

FF

JJ

Zi−1

GG

such that each Zi−1 // // · · · // Ni−1 // Zi−2 is a good sequence

of C.

Definition 4.3. A binary sequence in C is a sequence with two independent
differentials. More precisely, a binary sequence is a triple (N•, d, d

′) such that
(N, d) and (N, d′) are sequences in C. We call a binary sequence acyclic if each
of the sequences (N, d) and (N, d′) is acyclic in C. A morphism between binary
sequences is a morphism between the underlying graded objects that commutes
with both differentials. A good sequence (of binary sequences) is a sequence of
composable sequences of such morphisms that is good componentwise.

For C an n-category, SC the category of bounded sequences, denote by SqC
the category of bounded acyclic sequences. Similarly, we denote the category of
bounded binary sequences by BC and the category of bounded binary acyclic
sequences BqC. We proved before that SC is an n-category, similar results also
hold for the other three categories (with similar collections of good sequences).
Take the category SqC for example, we have

(1) 0• −→ 0• −→ · · · −→ 0• is good as long as the zero sequence 0• is acyclic
(i.e., an object of SqC). Indeed, we can factor it as

· · · // 0 di //

��

0 // · · ·

...

II

0

II

0

JJ

with 0 −→ 0 −→ · · · −→ 0 a good sequence in C.
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(2) is straightforward.
(3) Given two acyclic sequences

S0
•

// S1
•

// · · · // Sn+1
• ,

T 0
•

// T 1
•

// · · · // Tn+1
•

in SqC. Notice that the direct sum of acyclic sequences is also acyclic. Indeed,
given

· · · // S∗i
di //

��

S∗i−1
// · · ·

...

GG

JJ

Z∗i−1

HH

· · · // T ∗i
di //

��

T ∗i−1
// · · ·

...

GG

JJ

Z ′∗i−1

HH

with

Z∗i−1
// // · · · // S∗i−1 // Z∗i−2 ,

Z ′∗i−1
// // · · · // T ∗i−1 // Z ′∗i−2

good sequences in C, the direct sum of these two good sequences is good in C.
Hence

S0
• ⊕ T 0

• −→ S1
• ⊕ T 1

• −→ · · · −→ Sn+1
• ⊕ Tn+1

•

is an object of SqC. It is acyclic because

S0
k ⊕ T 0

k −→ S1
k ⊕ T 1

k −→ · · · −→ Sn+1
k ⊕ Tn+1

k

is good (as the direct summand is).
Similarly, one can prove the same result for BC and BqC.

Definition 4.4. There is a diagonal functor ∆ : SC −→ BC, sending (N•, d) to
(N•, d, d). A binary sequence that is in the image of ∆ is also called diagonal.
The diagonal functor is split by the top and bottom functors >,⊥ : BC −→ SC;
it is clear that ∆,>,⊥ are all exact.

Since BqC is an n-category, we can iteratively define an n-category (Bq)mC =
BqBq · · ·BqC for each m ≥ 0. The objects of this category are bounded acyclic
binary sequences of bounded acyclic binary sequences · · · of objects of C. It is
clear that the following is an equivalent definition of (Bq)mC.

Definition 4.5. The n-category (Bq)mC of bounded acyclic binary multise-
quences of dimension m in C is defined as follows. A bounded acyclic binary
multisequence of dimension m is a bounded (i.e., only finitely many non-zero),
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Zm-graded collection of objects of C together with a pair of acyclic differen-
tials (in each direction) such that any pair of differentials in different directions
commute. A morphism ϕ : N −→ N ′ between such binary multisequences is a
Zm-graded collection of morphisms of C that commutes with all of the differ-
entials of N and N ′. A good sequences in (Bq)mC is a composable pair of such
morphisms that is good componentwise.

In addition to (Bq)mC, for each m ≥ 1 we have an n-category Sq(Bq)m−1C of
bounded acyclic sequences of objects of (Bq)m−1C. For each i with 1 ≤ i ≤ m
there is a diagonal functor ∆i : Sq(Bq)m−1C −→ (Bq)mC that consists of “dou-
bling up” the differential of the (non-binary) acyclic sequence and regarding
it as direction i in the resulting acyclic binary multisequence. Any object of
(Bq)mC that is in the image of one of these ∆i is called diagonal. The diagonal

binary multisequences are those that have di = d̃i for at least one i.
Now we formally take Grayson’s presentation of the algebraic K-theory of ex-

act categories to be the definition of algebraic K-groups for n-categories. Note
that the Grothendieck group K0 defined below agrees with the Grothendieck
group of n-categories discussed in previous sections (which is in turn a gener-
alization of the Grothendieck group of n-angulated categories [1]).

Definition 4.6. For C an n-category and m ≥ 0, the abelian group KmC is
presented as follows. There is one generator for each bounded acyclic binary
multisequence of dimension m, and for X• : X0 −→ · · · −→ Xn+1 a good sequence
in (Bq)mC, there are relations:

(1) χ(X•) when n is odd or {〈0〉} ∪ χ(X•) when n is even.
(2) [T ] = 0 if T is a diagonal acyclic binary multisequence.

Observe that if we only consider the first relation, this is then exactly the
Grothendieck group of the category (Bq)mC. That is, KmC is a quotient group
of the Grothendieck group of the n-category (Bq)mC. Denote by TmC the sub-
group of K0(Bq)mC generated by the classes of the diagonal binary multise-
quences in (Bq)mC. Then we may write KmC ∼= K0(Bq)mC/TmC .

4.1. Even additivity theorem

We start by presenting the necessary materials needed for the even additivity
theorem.

Definition 4.7. Let B be an n-category. Then an n-subcategory A of B is a full
subcategory (containing the zero object) with the collection of good sequences
being all the good sequences in B whose entries are objects of A.

Suppose B is an n-category, A, C and X 2,X 4, . . . n-subcategories of B (the
sequence ends with Xn if n is even, or Xn−1 if n is odd). Then the even exten-
sion category E(A,X even, C) is the category whose objects are good sequences
of B of the form

A −→ X1 −→ · · · −→ Xn −→ C
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with A ∈ A, C ∈ C, Xeven ∈ X even (i.e., Xi is an object of X i for all even
index i and this convention will also be applied in the remaining of the arti-
cle) and morphisms are commuting rectangles. Denote the above object by
(A,Xeven, C).

Lemma 4.8. Eeven = E(A,X even, C) is an n-category, with FEeven being the
collection of sequences of the form

(A0, Xeven,0, C0)
f0

−→ (A1, Xeven,1, C1)
f1

−→ · · · f
n

−−→ (An+1, Xeven,n+1, Cn+1),

where

A0 f0

// A1 f1

// · · ·
fn

// An+1,

Xi,0 f0

// Xi,1 f1

// · · ·
fn

// Xi,n+1,

C0 f0

// C1 f1

// · · ·
fn

// Cn+1

good sequences in A,X i (i even) and C.

Proof. (1) 0 ∈ A,X i, C and 0• = (0 −→ · · · −→ 0) is good in B, so 0• ∈ Eeven and
0• −→ · · · −→ 0• ∈ FEeven as the sequences 0 −→ · · · −→ 0 are good.

(2) Suppose

(A,Xeven, C)
∼= // (A′, (X ′)even, C ′)

C
∼= // C ′

...
∼= //

OO

...

OO

Xeven
∼= //

OO

(X ′)even

OO

...
∼= //

OO

...

OO

A
∼= //

OO

A′

OO

.

Then

0• // · · · // (A,Xeven, C)
∼= // (A′, (X ′)even, C ′) // · · · // 0•
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0 // · · · // C
∼= // C ′ // · · · // 0

... //

OO

... //

OO

...
∼= //

OO

... //

OO

...

OO

//
...

OO

... //

OO

... //

OO

Xeven
∼= //

OO

(X ′)even //

OO

· · ·

OO

// · · ·

OO

... //

OO

... //

OO

...
∼= //

OO

... //

OO

...

OO

//
...

OO

0 //

OO

... //

OO

A
∼= //

OO

A′ //

OO

...

OO

// 0

OO

all squares commute and this is a good sequence in E as the required sequences
are good in A,X even and C.

(3) The direct sum of two good sequences in Eeven is good as the required
sequences are direct sums of good sequences in A,X even and C. �

Remark 4.9. One can impose an n-category structure on Eeven by defining a
sequence to be good if some components are good. The reason for considering
the n-category structure as defined in Lemma 4.8 will become clear in proofs
of the following.

Later n will be assume to be an odd integer, so for the classic case (i.e.,
n = 1), the good (i.e., exact) structure on Eeven we defined here is not the
classic definition for extension category of exact categories (classically, the exact
structure on extension categories is a sequence exact at all spots). However,
as the reader will see in the proof of Theorem 4.13, the requirement of being
good (i.e., exact) in the middle (n = 1 spot) is not necessary in proving the
even additive theorem.

We now start the discussion for the even additivity theorem.

Lemma 4.10. Let F : C −→ D be an exact functor of n-categories. Then there
is an induced group homomorphism

F∗ : K0C = G(πCi ) −→ G(πDi ) = K0D

[({X1}i, {X2}i)] 7→ [({F (X1)}i, {F (X2)}i)].

Proof. Use the definition of ∼i and equality in the group completion G(πi) to
obtain two good sequences, apply F to these sequences. �

Lemma 4.11. Let B be an n-category with n an odd integer, A,X even, C n-
subcategories of B, then for any A ∈ A, Xeven ∈ X even, C ∈ C, there is a good
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sequence

A 1 2 3 4 5 6 · · · n− 2 n− 1 n C

A // A⊕X2 // X2 // X4 // X4 // X6 // X6 // · · · // Xn−1 // Xn−1 // C // C

Proof. Given A ∈ A, Xeven ∈ X even, C ∈ C, we have following good sequences

A 1 2 3 4 5 6 · · · n− 2 n− 1 n C

A // A // 0 // 0 // 0 // 0 // 0 // · · · // 0 // 0 // 0 // 0

0 // X2 // X2 // 0 // 0 // 0 // 0 // · · · // 0 // 0 // 0 // 0

0 // 0 // 0 // X4 // X4 // 0 // 0 // · · · // 0 // 0 // 0 // 0

0 // 0 // 0 // 0 // 0 // X6 // X6 // · · · // 0 // 0 // 0 // 0

· · · · · · · · ·

0 // 0 // 0 // 0 // 0 // 0 // 0 // · · · // Xn−1 // Xn−1 // 0 // 0

0 // 0 // 0 // 0 // 0 // 0 // 0 // · · · // 0 // 0 // C // C

the direct sum of all above sequences is the desired sequence so it is indeed a
good sequence and therefore an object of the category Eeven. �

Given finitely many n-categories A,X even and C, we can make the product
category A× X even × C into an n-category by declaring good sequences to be
sequences of the form A0 ×Xeven,0 × C0 −→ · · · −→ An+1 ×Xeven,n+1 × Cn+1

where A0 −→ · · · −→ An+1, Xeven,0 −→ · · · −→ Xeven,n+1 and C0 −→ · · · −→ Cn+1

are good sequences in A, X even and C. Notice that here we denote objects of
A × X even × C as A × Xeven × C to distinguish them from objects of Eeven
discussed before. From now on, n denotes an odd integer.

Lemma 4.12. The functors ϕ : Eeven −→ A × X even × C, where one sends
(A −→ X1 −→ · · · −→ Xn −→ C) to A×Xeven×C and ψ : A×X even×C −→ Eeven
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that maps A ×Xeven × C to (A −→ A ⊕X2 −→ X2 −→ · · · −→ Xn−1 −→ C −→ C)
are exact functors of n-categories.

Theorem 4.13 (Even additivity). For B an n-category, A, X even, C n-sub-
categories of B. Moreover, we require that the composition of any two consecu-
tive maps of any good sequence is zero. Then KmEeven ∼= KmA×KmX even ×
KmC for any m ≥ 0.

Proof. First, the theorem holds for m = 0: K0Eeven ∼= K0A×K0X even×K0C.
The maps ϕ,ψ induce maps of the Grothendieck groups. We obviously have
ϕ◦ψ = 1 so ϕ∗ is a left inverse of ψ∗. Thus it suffices to show that ψ∗ ◦ϕ∗ = 1.

For every E : A
d0−→ X1 d1−→ · · · d

n−1

−−−→ Xn dn−→ C in Eeven we have

ψ ◦ ϕ(E) = (A −→ A⊕X2 −→ X2 −→ · · · −→ Xn−1 −→ C −→ C)

so we need to show

[E] = [(A −→ A⊕X2 −→ X2 −→ · · · −→ Xn−1 −→ C −→ C)]

in K0Eeven.
This relation follows from the fundamental relation of K0, given that the

following are both good sequences (commutativity is straightforward, they are
good as the even spots and two boundary sequences are good)

0 // C
1 // C // 0 // · · · // 0

0 //

OO

C //

OO

C //

1

OO

0 //

OO

· · · // 0

OO

0 //

OO

Xn−1 1 //

OO

Xn−1 //

0

OO

0 //

OO

· · · // 0

OO

0

OO

// Xn−1

OO

// Xn−1

OO

// 0

OO

// · · · // 0

OO

...

OO

...

OO

...

OO

...

OO

...

OO

0 //

OO

X2 1 //

OO

X2 //

OO

0 //

OO

· · · // 0

OO

A //

OO

A⊕X2 //

OO

X2 //

1

OO

0 //

OO

· · · // 0

OO

A
1
//

1

OO

A

OO

// 0 //

OO

0 //

OO

· · · // 0

OO

0 // C
1 // C // 0 // · · · // 0

0 //

OO

Xn //

OO

C //

1

OO

0 //

OO

· · · // 0

OO

0 //

OO

Xn−1 1 //

OO

Xn−1 //

0

OO

0 //

OO

· · · // 0

OO

0

OO

// Xn−2

d

OO

d // Xn−1

1

OO

// 0

OO

// · · · // 0

OO

...

OO

...

OO

...

OO

...

OO

...

OO

0 //

OO

X2 1 //

OO

X2 //

OO

0 //

OO

· · · // 0

OO

A
d0 //

OO

X1 d1 //

d1

OO

X2 //

1

OO

0 //

OO

· · · // 0

OO

A
1
//

1

OO

A

d0

OO

// 0 //

OO

0 //

OO

· · · // 0

OO

L0
• −→ ψ ◦ ϕ(E) −→ L1

• −→ 0 −→ · · · −→ 0 L0
• −→ E −→ L1

• −→ 0 −→ · · · −→ 0.
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The commutativity of the right diagram is because the composition of any two
consecutive maps of E is zero and it is representing a good sequence in Eeven

as the even components are given by isomorphisms 0 −→ Xeven 1−→ Xeven −→
0 −→ · · · −→ 0. Therefore we have K0Eeven ∼= K0A×K0X even ×K0C.

Now, for any m ≥ 0, (Bq)mA, (Bq)mX i and (Bq)mC are subcategories with
good collections of (Bq)mB. Define the mth extension category
(Eeven)m(A,X even, C) := Eeven((Bq)mA, (Bq)mX even, (Bq)mC) and we have
(Eeven)m ∼= (Bq)mEeven because any binary multisequence of good sequences
is the same as a good sequence of binary multisequences, just like the (bi-
nary multicomplexes) situation as Harris’s proof of Theorem 2.9 [5]. This
implies that K0(Eeven)m ∼= K0(Bq)mA ×K0(Bq)mX even ×K0(Bq)mC as be-
fore. Similarly, under the identification of (Eeven)m and (Bq)mEeven, a binary
multisequence in (Bq)mEeven is diagonal in a direction if and only if its con-
stituent binary multisequences in (Bq)mA, (Bq)mX even, and (Bq)mC are also
diagonal in the same direction; and if A· ∈ (Bq)mA, Xeven ∈ (Bq)mX even and
C · ∈ (Bq)mC are diagonal, then so are the binary multisequences correspond-
ing to A· −→ A· −→ · · · −→ 0, 0 −→ · · · −→ 0 −→ C −→ C and 0 −→ · · · −→ (X2k)· −→
(X2k)· −→ 0 −→ · · · −→ 0 (with the second (X2k)· placed at position 2k), so
ψ preserves diagonal binary multisequences and this means the isomorphism
K0(Eeven)m ∼= K0(Bq)mA × K0(Bq)mX even × K0(Bq)mC restricts to an iso-
morphism TmEeven

∼= TmA ×TmX even ×TmC . Passing to the quotient groups finishes
the proof. �

Corollary 4.14. The even additive theorem holds for K groups of n-exangul-
ated categories, where n is odd.

Proof. The condition that the composition of any two consecutive maps of a
good sequence is zero is automatic for n-exangulated categories as any distin-
guished n-exangle is a complex satisfying some other conditions. �

Remark 4.15. Our additive theorem does not hold for the category of N-
complexes and precomplexes as the technical assumption of zero composition
for good sequences in Theorem 4.13 fails.
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