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SYNCHRONIZED COMPONENTS OF A SUBSHIFT

Manouchehr Shahamat

Abstract. We introduce the notion of a minimal synchronizing word;

that is a synchronizing word whose proper subwords are not synchronized.

This has been used to give a new shorter proof for a theorem in [6]. Also,
the common synchronized components of a subshift and its derived set

have been characterized.

1. Introduction

For a subshift, two approximations may be considered: (1) From outside,
that is, X is the intersection of Xk’s where Xk+1 ⊆ Xk, k ∈ N. In this case,
h(X) the entropy of X, is exactly limk→∞ h(Xk) [4, Proposition 4.4.6]. (2)
From inside, that is, X = ∪Xk, Xk ⊆ Xk+1. Then, h(X) ≥ limk→∞ h(Xk)
and equality occurs in special cases. For instance, when X is sofic, or more
generally when X is specified, one can find Xk’s all SFT so that equality is
satisfied [4, page 452]. In this respect, Thomsen in [5] considers a synchronized
component of a general subshift and investigates the approximation of entropy
from inside of this synchronized component by some certain SFT’s. In fact,
many results in [5] are based on this result. To be more specified, supposeW (X)
is the set of admissible blocks of X and Wn(X) the set of admissible blocks of
length n or so called n-blocks. Thomsen proves that limk→∞ h(Xk) = hsyn(X)
where

(1) hsyn(X) := lim sup
n

1

n
log (cardinal {a ∈Wn(X) : mam ∈W (X)}) ,

where m is an arbitrary synchronizing block in W (X) and Xk’s are SFT ap-
proaching X from inside. In Section 3, we give a new proof for this result, and
in particular, our approach is a constructive approach. Our main tool is that
we consider the minimal synchronizing blocks, i.e., synchronizing blocks whose
any pure subblock are not synchronizing. Then, in the sequel we will inves-
tigate synchronized components of systems with finite minimal synchronizing
blocks.
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Now let Per(X) be the set of periodic points of X and set R(X) = Per(X).
Also let S(X) denote the set of synchronizing blocks for R(X). Set

(2) ∂X := {x ∈ R(X) : w ⊆ x⇒ w 6∈ S(X)}
called the derived shift space of X. Then, ∂(X) plays an important role in
the dynamics of the system. As an example, a result in [6] states that in
synchronized systems

h(X) = max{hsyn(X), h(∂(X))}.
Note that ∂X is empty for an SFT and it is sofic whenever X is sofic [5,
Theorem 6.6]. In fact, for specified systems (containing sofic shifts) h(X) =
hsyn(X) [3, page 16] and elsewhere easy examples can be established so that
h(X) = h(∂(X)). For a synchronized system which is irreducible by definition,
no transitive points will be in ∂(X) and so ∂(X) lies in the complement of a
residual set; however, it may be dynamically interesting. Generally, ∂X is more
interesting for non-specified systems and in particular for reducible systems.
For instance, it may happen that as a subshift, X and ∂X have a common
synchronized component. We will characterize this situation in Section 3.

2. Background and definitions

This section is devoted to basic definitions for our later work. The notations
have been taken from [2], [4] and [5] for the relevant concepts.

First, we present some elementary concepts from [4]. Let A be a set of non-
empty finite symbols called alphabet. The full A-shift, denoted by AZ, is the
collection of all bi-infinite sequences of symbols in A. Equip A with discrete
topology and AZ with product topology. A block over A is a finite sequence of
symbols from A. It is convenient to include the sequence of no symbols, called
the empty block which is denoted by ε. If x is a point in AZ and i ≤ j, then
we will denote a block of length j − i + 1 by x[i, j] = xixi+1 · · ·xj . If n ≥ 1,

then un denotes the concatenation of n copies of u, and put u0 = ε. The shift
map σ on the full shift AZ maps a point x to the point y = σ(x) whose i-th
coordinate is yi = xi+1. By our topology, σ is a homeomorphism. Let F be
the collection of all forbidden blocks over A. The complement of F is the set of
admissible blocks or just blocks in X. For a full shift AZ, define XF to be the
subset of sequences in AZ not containing any block from F . A shift space or a
subshift is a subset X of a full shift AZ such that X = XF for some collection
F of forbidden blocks.

Let Wn(X) denote the set of all admissible n-blocks. The language of X
is the collection W (X) = ∪nWn(X). A shift space X is irreducible if for
every ordered pair of blocks u, v ∈ W (X) there is a block w ∈ W (X) so that
uwv ∈W (X). It is mixing if for every ordered pair u, v ∈W (X), there is an N
such that for each n ≥ N there is a block w ∈Wn(X) such that uwv ∈W (X).
A shift space X is called a shift of finite type (SFT) if there is a finite set F of
forbidden blocks such that X = XF . A shift of sofic is the image of an SFT by a
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factor code (an onto sliding block code). Every SFT is sofic [4, Theorem 3.1.5],
but the converse is not true. For instance, if F = {102n+11 : n ∈ N ∪ {0}},
then XF is called the even shift which is not SFT but it is sofic [4, page 67].

Let G be a graph with edge set E = E(G) and the set of vertices V = V(G).
The edge shift XG is the shift space over the alphabet A = E defined by

XG = {ξ = (ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1)}.

Each edge e initiates at a vertex denoted by i(e) and terminates at a vertex
t(e).

A labeled graph is a pair G = (G, L), where G is a graph with edge set E ,
and the labeling L : E(G) → A assigns to each edge e of G a label L(e) from
the finite alphabet A. For a path π = π0 · · ·πk, L(π) = L(π0) · · · L(πk) is the
label of π.

Let L∞(ξ) be the sequence of bi-infinite labels of a bi-infinite path ξ in G
and set

XG := {L∞(ξ) : ξ ∈ XG} = L∞(XG).

We say G is a presentation or a cover for X = XG . In particular, X is sofic
if and only if X = XG for a finite graph G [4, Proposition 3.2.10]. A labeled
graph G = (G, L) is right-resolving if for each vertex I of G the edges starting
at I carry different labels.

In this part we collect some information from [2]. Let X be a shift space
and w ∈W (X). The follower set F (w) of w is defined by F (w) = {v ∈W (X) :
wv ∈ W (X)}. Let x ∈ X. Then, x+ = (xi)i∈Z+ (resp. x− = (xi)i≤0) is called
a right (resp. left) infinite X-ray. For a left infinite X-ray, say x−, its follower
set is w+(x−) = {x+ ∈ X+ : x−x+ ∈ X}. Consider the collection of all follower
sets w+(x−) as the set of vertices of a graph. There is an edge from I1 to I2
labeled a if and only if there is an X-ray x− such that x−a is an X-ray and
I1 = w+(x−), I2 = w+(x−a). This labeled graph is called the Krieger graph
for X. A block m ∈ W (X) is synchronizing if whenever um and mv are in
W (X), we have umv ∈ W (X). An irreducible shift space X is a synchronized
system if it has a synchronizing block, or equivalently, if and only if it admit a
countable generating graph G such that L∞(XG) is residual in X [2, Theorem
1.1].

If X is a synchronized system with synchronizing m, the irreducible com-
ponent of the Krieger graph containing the vertex w+(m) is denoted by X+

0

and is called the Fischer cover of X. If for some m ∈ W (X) there is a unique
vertex I such that m ∈ F−(m), then m is called a magic block for the Fischer
cover.

For the last part of this section we bring some concepts from [5]. Let X be
a shift space. Set R(X) = PerX and let S(X) denote the set of synchronizing
blocks for R(X). For s, t ∈ S(X) we write s ∼ t when there are blocks u, v ∈
W (R(X)) such that sut, tvs ∈ W (R(X)). Then, ∼ is an equivalence relation
in S(X). Note that s ∼ t if only if there is an x ∈ R(X) such that s, t ⊆ x.
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Consider an element α ∈ S(X)/ ∼. Let X(α, 0) denote the set of elements
x ∈ R(X) for which

(3) sup
i∈Z

{
inf
{

(j − i) ≥ 0 : ∃w ∈ α, w ⊆ x[i, j]
}}

is finite. Here, we use the convention that inf ∅ = ∞. We can associate to
X(α, 0) an irreducible graph Γα. For each m ∈ α, let F (m) = {u ∈W (X(α, 0)) :
mu ∈W (X(α, 0))}. The vertices of Γα consist of {F (m) : m ∈ α}; and there is
an edge labeled a from F (m) to F (m′) when a ∈ F (m) and F (ma) = F (m′).
Then, Γα is a cover of X(α, 0). Let ∂(X) be as in (2) and denote the set of

synchronizing blocks for R(∂k(X)) by S(∂k(X)). Define the depth of X to be
Depth(X) = sup{k ∈ N : ∂k(X) 6= ∅}. If α ∈ S(∂k(X))/ ∼, then (∂k(X))(α, 0)
will be denoted by X(α, k).

Let X be a shift space. The entropy of X is defined by

h(X) = lim
n→∞

1

n
log |Wn(X)|.

A shift space X is almost sofic if there are sofic shifts Xn ⊆ X such that

lim
n→∞

h(Xn) = h(X).

3. Synchronized components

In this section we introduce the notion of minimal synchronizing blocks and
will exploit them to identify synchronized components.

Definition 3.1. A block m ∈ S(X) is a minimal synchronizing block, if when-
ever w  m, then w is not synchronizing. If a shift space X has finitely many
minimal synchronizing blocks and S(X) 6= ∅, then we say that X is an FmSyn
system; otherwise, it is called an ImSyn system.

Example 3.2. (i) Every sofic space is FmSyn. This fact can be seen by
the fact that any sofic has a finite cover, say its Fischer cover. An
easy consequence is that Fischer cover of an ImSyn system must be
infinite.

(ii) The block 1 is minimal synchronizing for any S-gap shift X(S) and
no other minimal synchronizing block exists which means that this
system is FmSyn even when it is not sofic. See [1] for criteria on S to
have X(S) non-sofic.

(iii) Let G be the graph as in Figure 1 and X = XG = R(X). Then
all blocks in A = {2, 101, 1031, 1051, . . .} are synchronizing blocks.
However, blocks in

{1, 0, 100, 1000, . . .} ∪ {01, 001, 0001, . . .}

are not. Therefore, no blocks in A has a synchronizing subblock and
so X is ImSyn.
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Figure 1. Graph G for the cover of an ImSyn.

Definition 3.3. Let X be a shift space. The subsystem Y is called a synchro-
nized component of X whenever Y is a synchronized subsystem of X and if Z
is any synchronized subsystem with Y ⊆ Z ⊆ X, then Y = Z.

Note that if X is a synchronized system, then Y = X.
Let x ∈ X and p ≤ s for integers p and s. Set the gap between two blocks

x[p, q] and x[s, t] to be 0 when s ≤ q and s − q otherwise. Denote this gap by
gap(x[p, q], x[s, t]).

Definition 3.4. Let p < s and q ≤ t and let u = x[p, q], v = x[s, t] ∈ α ∈
S(X)/ ∼ be two minimal synchronizing blocks. If the only minimal synchro-
nizing blocks in x[p, t] are u and v, then call u and v the consecutive minimal
pairs of α in x.

Let x ∈ X(α, 0). By (3),

{gap(u, v) : u, v are the consecutive minimal pairs of α in x}
is bounded and we will denote the maximum by maxgap(x, α).

Lemma 3.5. Let x ∈ X(α, 0). Then,

(i) For all i ∈ Z there are ui, vi ∈ α such that ui ⊆ x(−∞, i], vi ⊆ x[i,+∞).
(ii) There is M > 0 such that if u, v are the consecutive minimal pairs of

α in x, then gap(u, v) ≤M .
(iii) A = {w ⊂ x : w is a minimal synchronizing} ∩ α is finite.

Conversely, if (i), (ii) and (iii) hold for x ∈ R(X) = PerX, then x ∈ X(α, 0). In
particular, if x ∈ R(X) is a periodic point with a subblock in α, then x ∈ X(α, 0).

Proof. Let x ∈ X(α, 0) and for all i ∈ Z set

(4) Mi := inf{j − i ≥ 0 : ∃ w ∈ α, w ⊆ x[i,j]}.
Hence x ∈ X(α, 0) if and only if Mx := sup{Mi : i ∈ Z} <∞.

(i) Pick i0 ∈ Z. If {u ∈ α : u ⊆ x[i0,+∞)} = ∅, then the infimum in (3)
would be taken over an empty set and so (3) will not be satisfied. Thus there
is j0 ∈ N such that x[i0, j0] ∈ α.

Now let {u ∈ α : u ⊆ x(−∞, i0]} = ∅. Then, for all n ∈ N, x[in, i0] 6∈ α where
in := i0 − n. Thus

Min = inf{j − in ≥ 0 : ∃ w ∈ α, w ⊆ x[in, j]} > i0 − in = n
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and so Mx = sup{Min : n ∈ N} =∞ that is absurd. Hence there is n ∈ N such
that x[in, i0] ∈ α.

(ii) Let u := x[p, q], v := v[s, t] be the consecutive minimal pairs of α in x. If
s ≤ q, then by definition gap(u, v) = 0. So let q < s. Then,

Mq = inf{j − q ≥ 0 : ∃w ∈ α, w ⊆ x[q, j]}
= t− q = s− q + t− s = gap(u, v) + |v| − 1

and so gap(u, v) ≤ gap(u, v) + |v| − 1 = Mq ≤Mx.
(iii) Suppose x has infinitely many minimal synchronizing blocks w1, w2, . . ..

Then we may write |w1| < |w2| < · · · and wi := x[ji, ji+|wi|−1]. Hence for all
i ∈ N, Mji = |wi| − 1 and so Mx = sup{Mj1 , Mj2 , . . .} =∞ that is absurd.

For the converse set

M ′ := max{|w| : w ⊆ x is minimal synchronizing}.
By (iii) such a maximum exists. Let i ∈ Z. By (i) there is a v ∈ α such
that v is the terminal segment of x[i, j] (x[i, j) ∩ S(X) = ∅). Suppose u, v
are the consecutive minimals of α in x (Not v and u). Then by (ii), j − i ≤
|u|+ |v|+ gap(u, v) ≤ 2M ′ +M and so x ∈ X(α, 0). �

Based on the conclusions of Lemma 3.5, we give a new shorter and simpler
proof for a theorem of Thomsen [5, Theorem 3.2].

Proposition 3.6 (Thomsen). Let X be a shift space. Then, there is a sequence
Aα, 1 ⊆ Aα, 2 ⊆ · · · of irreducible SFT’s in X such that

(5) X(α, 0) =
⋃
n

Aα, n,

and

lim
n
h(Aα, n) = sup{h(A) : A ⊆ X(α, 0) is an irreducible SFT}(6)

= h(Γα) = hsyn(X(α, 0)).

Proof. Let T ={m∈α : m is a minimal synchronizing of R(X)}={m1,m2, . . .}
and pick x(1) ∈ X(α, 0) so that m1,m2 ⊆ x(1). Since x(1) ∈ PerX, there is
y(1) = v∞ such that m1,m2 ⊆ v and by Lemma 3.5, y(1) ∈ X(α, 0). If necessary,
by a rearrangement of the elements of T , let m1,m2, . . . ,mj1 be the elements

of T appearing as subblocks of y(1) and let M1 = maxgap(y(1), α). Suppose
A1 is the set of all x ∈ X(α, 0) with maxgap(x, α) ≤M1 and whenever mi ⊆ x,
then i ≤ j1. Since m1, m2, . . . , mj1 , mj1+1 ∈ α, by irreducibility of X(α, 0)

there exists y(2) = u∞ ∈ PerX such that m1, m2, . . . , mj1+1 ⊆ u. Now let

m1, m2, . . . , mj1 , mj1+1, . . . , mj2

be subblocks of y(2) lying in T and let M2 = max{M1 + 1, maxgap(y(2), α)}.
Similar to A1, A2, for any n ∈ N, set

An := {x ∈ X(α, 0) : maxgap(x, α) ≤Mn and if mi ⊆ x, then i ≤ jn}.
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Then, An ⊆ An+1 and y(n) ∈ An. We claim that

(i) A1 ⊆ A2 ⊆ · · · .
(ii) An is an irreducible shift space.
(iii) An is SFT .
(iv) ∪An = X(α, 0).

Observe that by setting Aα, n := An, we will have (5).

Validity of (i) and the fact that An is a shift space is trivial. For irreducibility
of An, let a, b ∈W (An). Then, there are x, z ∈ An such that a ⊆ x and b ⊆ z.
Let jn be the integer provided by the definition of y(n). There are i ≤ j ≤ jn
and a′, b′ ∈W (X) such that aa′mi ⊆ x,mjb

′b ⊆ z or aa′mi,mjb
′b ∈W (An) for

some mi, mj ∈ T . Also, y(n) ∈ An is a periodic point having all synchronizing

mi, i ≤ jn. Therefore, there is w with miwmj ⊆ y(n) which this in turn implies

that aa′miwmjb
′b ∈W (An) and so An is irreducible.

For (iii), let u ∈W (An) where |u| ≥Mn+ 2 max{|m1|, . . . , |mjn |} = M . By
definition of An, there must be at least one mi ⊆ u and such a u is essentially
synchronizing. As a result, any block of length M in An is synchronizing and
so An is SFT [4, Theorem 2.1.8].

To prove (iv), clearly ∪An ⊆ X(α, 0). For the other side let x ∈ X(α, 0) and
using Lemma 3.5(iii), let mi1 , . . . ,mir be the elements of α occurring as some
subblocks in x. Then, there is k such that x ∈ Ak and we are done with our
claim.

Now we set up to prove (6). Let ε > 0 and

t0 := sup{h(A) : A ⊆ X(α, 0) is an irreducible SFT}.
Choose r > 0 and A ⊆ X(α, 0), an irreducible SFT such that t0−ε < r < h(A) =
hsyn(A); where the last equality is satisfied because A is SFT [5, Lemma 3.1].
Let m ∈ α ∩W (A) and let |m| be so large that m is a synchronizing block of
A. Utilizing (1), there is N ≥ 1 such that

(7)
1

N
log |{a ∈WN (A) : (am)∞ ∈ A}| ≥ t0 − ε.

Also there exists k ≥ 1 such that for all a ∈ WN (A) if (am)∞ ∈ A, then
(am)∞ ∈ Ak. Thus,

1

N
log
∣∣{a ∈WN (Ak) : (am)∞ ∈ Ak}

∣∣ ≥ 1

N
log |{a ∈WN (A) : (am)∞ ∈ A}| .

Hence t0 ≤ ε+ 1
N log

∣∣{a ∈WN (Ak) : (am)∞ ∈ Ak}
∣∣. Thus t0 ≤ ε+hsyn(Ak) =

ε+ h(Ak). So

(8) t0 ≤ lim(h(Ak))

and then in fact limh(Ak) = t0.
Now we show that Γα is the Fischer cover of X(α, 0); that is, we prove that

Γα is a right resolving and follower separated graph with a magic block [2,
Theorem 2.16]. By definition Γα is right resolving. It is also follower separated
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Figure 2. The subgraph H of Γα.

for let F (m) 6= F (m′). Then, for u ∈ F (m) \ F (m′), mu ∈ W (X(α, 0)) but
m′u 6∈ W (X(α, 0)). Choose x ∈ X(α, 0) such that mu = x[−|m|, |u|−1]. Hence
x+ ∈ w+(F (m)) and x+ 6∈ w+(F (m′)) and so w+(F (m)) 6= w+(F (m′)). This
means that Γα is follower separated.

To this end, we look for a magic block for Γα. Let m ∈ α and choose
u ∈ W (X) such that mum ∈ W (X(α, 0)). Since F (mum) = F (m), so m ∈
F−(F (m)) where F (m) is a vertex of Γα. If m ∈ F−(F (m′)), then there is
m′′ ∈ α such that F (m′) = F (m′′m) = F (m). Thus m is a magic block for
the Γα [2, page 147]. Hence Γα is a Fischer cover of X(α, 0) and so h(Γα) =

hsyn(X(α, 0)) [3, Section 5].
It remains to prove that h(Γα) = t0. Let ε > 0 and set

{a1, . . . , ar} := {a ∈WN (Ak) : (am)∞ ∈ Ak}.
A graph consisting of the path labeled maim (1 ≤ i ≤ r) is a finite subgraph
H of Γα as in Figure 2. So h(Γα) ≥ h(H) ≥ 1

N+|m| log(r) and by (7) we have

h(Γα) ≥ lim
N

1

N + |m|
log(r) = lim

N

1

N
log
∣∣{a ∈WN (Ak) : (am)∞ ∈ Ak}

∣∣
≥ t0 − ε.

Also h(Γα) ≤ t0 is trivial and we are done. �

Corollary 3.7. Let X be a synchronized system such that hsyn(X) = h(X).
Then, X is almost sofic.

Proof. In this case there is one element, say α in S(X)/ ∼ where X = X(α, 0)

and so hsyn(X(α, 0)) = h(X). Now the conclusion follows from Proposition
3.6. �

Lemma 3.8. Let x ∈ R(X) and suppose that there is s ∈ α ∈ S(X)/ ∼ such

that s ⊆ x. Then, x ∈ X(α, 0).

Proof. Let x ∈ R(X) and suppose s ∈ α ∈ S(X)/ ∼ with s ⊆ x. Then,
for sufficiently large n ≥ 1, s ⊆ x[−n, n] ⊆ x ∈ R(X). Since s and x[−n, n]
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Figure 3. A graph for Gn; X := X(∪n∈NGn).

are in S(X), s ∼ x[−n, n] and this implies that there is y ∈ X(α, 0) such that{
s, x[−n, n]

}
⊆ y. But n was arbitrary large and so x ∈ X(α, 0). �

Now the following is immediate.

Proposition 3.9. Let s ∈ α and let Y ⊆ R(X) be an irreducible shift space
such that s ∈W (Y ). Then, Y ⊆ X(α, 0).

Corollary 3.10. X(α, 0) is a synchronized component of X.

Proof. Not that X(α, 0) is a synchronized system. Now let Y be a synchronized

subsystem of X with X(α, 0) ⊆ Y . Since Y ⊆ R(X), Proposition 3.9 shows that

X(α, 0) = Y . �

Corollary 3.11. If C is a synchronized component of X, then either there is a
unique α0 ∈ S(X)/ ∼ such that C = X(α0, 0) or C is a synchronized component
of ∂(X).

Proof. Suppose there is α0 ∈ S(X)/ ∼ such that C ∩ X(α0, 0) 6= ∅. Then,

C * ∂(X) and Proposition 3.9 shows that X(α0, 0) = C. If X(α0, 0) = X(β, 0),
then α0 ∩ β 6= ∅ and so α0 = β. Thus α0 is unique.

Now let for each α ∈ S(X)/ ∼, C ∩ X(α, 0) = ∅. If C 6⊆ ∂(X), then there
are α ∈ S(X)/ ∼ and s ∈ α such that s ∈W (C). Thus C ∩X(α, 0) 6= ∅ that is
absurd and so C ⊆ ∂(X). �

Note that for β ∈ S(∂i(X))/ ∼ , X(β, i) is a synchronized component of ∂i(X)
which may not be a synchronized component for X. Now we investigate the
cases where a synchronized component of ∂i(X) is a synchronized component
of X as well. First an example:

Example 3.12. Let X := X(∪nGn) where Gn is the graph as in Figure 3.
Then, the synchronized components of X are {0, 1}∞, {0, 2}∞ and {3∞} while
the synchronized component of ∂(X) is {0∞}.

Proposition 3.13. Let Y ⊆ ∂(X) be a synchronized component of ∂(X).
Then, Y is a synchronized component of X if and only if for all α ∈ S(X)/ ∼,
Y * (X(α, 0))

′ = X(α, 0) \X(α, 0).
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Proof. Suppose Y ⊆ ∂(X) is a synchronized component of ∂(X) but not a
synchronized component of X. Then, there is a synchronized subsystem Z
such that Y $ Z ⊆ X. By the fact that Y is a synchronized component
of ∂(X), so Z * ∂(X). Also Proposition 3.9 implies that there is α such

that Y ⊆ Z ⊆ X(α, 0). However Y ⊆ ∂(X), hence Y ∩ X(α, 0) = ∅ and so
Y ⊆ (X(α, 0))

′.
Conversely, let Y ⊆ (X(α, 0))

′. If Y is a synchronized component of X, then

Y = X(α, 0). That implies X(α, 0) ⊆ ∂(X) which is absurd. �

Remark 3.14. One may use Γα to visualize X(α, 0). To sort this out, let X =
R(X). Then, Γα is the Fischer cover of X and for any synchronizing block such
as m, there is a unique “magic” vertex in Γα which is the terminal of any path
labeled m. Now if x ∈ R(X) and satisfies (3), then since x will have infinitely
many synchronizing blocks in past and future, there must be a bi-infinite path
labeled x, say πx in Γα passing through m and the magic vertex.

In fact by Lemma 3.5, if πy is a bi-infinite path visiting some finite magic
blocks infinitely many in bounded times in past and future, then y ∈ X(α, 0).

By the above remark, an equivalent statement to (3) is

(9) sup
i∈Z

{
inf{(j − i) ≥ 0 : x[i,j] is synchronizing, πx ∈ X+

0 }
}
.

4. Finite minimal synchronizing in depths

If X is sofic, then ∂X is sofic, Depth(X) is finite and X has finitely many
synchronized components [5].

In this section we introduce certain subshifts with finite depths and we will
show that they also have finitely many synchronized components.

Definition 4.1. A shift space X is called finite minimal synchronizing in
depths (FmSynID), if Depth(X) = n < ∞ and all X, R(X), R(∂(X)), . . .,
R(∂n(X)) are FmSyn as defined in Definition 3.1.

By definition, if X is an irreducible FmSynID, then X is a synchronized
system.

Example 4.2. Sofics and S-gap shifts are FmSynID. For a set of examples of
non-FmSynID with finite depth let F be a countable family of pairwise disjoint
subsets of N with at least two elements and set Xi := X(Si), X := ∪iXi for
Si ∈ F. If there are at least two 1’s appearing in x ∈ X, then there must be
a ki ∈ Si such that 10ki1 ∈ Xi is a synchronizing word for Xi as well as X.
Hence, ∂X = {0∞, 0∞10∞} and so Depth(X) = 2. Now if |F| = ∞, then X
will have infinitely many minimal synchronizing blocks and so X cannot be
FmSynID.

Let X be a shift and let X−1 be the shift space consisting of points x−1 :=
. . . x2x1x0x−1 . . . whenever x = . . . x−1x0x1x2 . . . ∈ X.
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Proposition 4.3. (i) X is FmSynID if and only if X−1 is FmSynID.
(ii) If X is FmSynID, then X has finitely many synchronized components.

Proof. (i) Note that u = u0 · · ·uk is a synchronizing block for X if and only if
u−1 = uk · · ·u0 is a synchronizing block for X−1. So Depth(X) = Depth(X−1),
R(X−1) = (R(X))−1, ∂(X−1) = (∂X)−1, . . . and ∂n(X−1) = (∂nX)−1. This
completes the proof of (i).

(ii) By applying Corollary 3.11 to higher depths, if Y is a synchronized
component of X, then there are i ∈ {0, 1, 2, . . . , n} and α ∈ S(Ri(X))/ ∼ such
that Y = X(α, i). But for each i, R(∂i(X)) is FmSyn or S(∂i(X))/ ∼ is finite.

This implies |{X(α, i)}α∈S(∂i(X))/∼| <∞. �

Proposition 4.4. Suppose X is FmSynID, with Depth(X) = n and for each
0 ≤ i ≤ n,

(i) h(∂iX) = h(Per(∂iX)),
(ii) h(X(α, i)) = hsyn(X(α, i)).

Then, X is almost sofic.

Proof. Let S(∂n(X))/ ∼= {α(n,1), α(n,2), . . . , α(n,kn)}. Since R(∂n+1(X)) = ∅,

Per(∂n(X)) = R(∂n(X)) =

kn⋃
i=1

X(α(n,i), n).

Hence, h(R(∂n(X))) = max
{
h
(
X(α(n,i), n)

)
: 1 ≤ i ≤ kn

}
and so by (i) in our

hypothesis,

h(∂n(X)) = max
{
h
(
X(α(n,i), n)

)
: 1 ≤ i ≤ kn

}
.

Since |S(∂n−1(X))/ ∼ | = kn−1 <∞,

Per(∂n−1(X)) = R(∂n−1(X)) =

kn−1⋃
i=1

X(α(n−1,i), n−1)

 ∪ ∂n(X)

and so

h(∂n−1(X)) = max
{
h
(
X(α(n−1,1), n−1)

)
, . . . , h

(
X(α(n−1, kn−1), n−1)

)
, h(∂n(X))

}
.

Continuing this way, there will be α ∈ S(∂i(X))/ ∼ for some i such that

h(X) = h(∂0(X)) = h
(

Per(∂0(X))
)

= h
(
X(α, i)

)
.

Therefore by (ii), h(X) = hsyn
(
X(α, i)

)
. Now the result follows from Corollary

3.7. �
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