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GORENSTEIN SEQUENCES OF HIGH SOCLE DEGREES

Jung Pil Park and Yong-Su Shin†

Abstract. In [4], the authors showed that if an h-vector (h0, h1, . . . , he)

with h1 = 4e − 4 and hi ≤ h1 is a Gorenstein sequence, then h1 = hi

for every 1 ≤ i ≤ e − 1 and e ≥ 6. In this paper, we show that if an

h-vector (h0, h1, . . . , he) with h1 = 4e− 4, h2 = 4e− 3, and hi ≤ h2 is a

Gorenstein sequence, then h2 = hi for every 2 ≤ i ≤ e− 2 and e ≥ 7. We
also propose an open question that if an h-vector (h0, h1, . . . , he) with

h1 = 4e − 4, 4e − 3 < h2 ≤ (h1)(1)|+1
+1, and h2 ≤ hi is a Gorenstein

sequence, then h2 = hi for every 2 ≤ i ≤ e− 2 and e ≥ 6.

1. Introduction

We consider a standard graded Artinian algebra A = R/I, where R =
k[x0, x1, . . . , xn], I is a homogeneous ideal of R, and k is a field of any char-
acteristic. The h-vector of A is H = (h0, h1, . . . , he), where hi = dimkAi
and e is the last index such that dimkAe 6= 0. The socle of A is the an-
nihilator of the maximal homogeneous ideal m = (x̄0, x̄1, . . . , x̄n) ⊂ A, i.e.,
soc(A) = {a ∈ A | a ·m = 0}. We define a socle vector of sA = (s0, s1, . . . , se),
where si = dimk soc(A)i. Note that se = he. The integer e is called the socle
degree of A (or of H). If sA = (0, . . . , 0, se = s), we say that A is an Artinian
level algebra of type s. Moreover, if s = 1, then A is an Artinian Gorenstein
algebra, and H is a Gorenstein sequence (or Gorenstein h-vector). In this pa-
per, we show that the non-unimodals satisfying certain conditions do not occur
(see Question 1.1).

Recall that an h-vector H = (h0, h1, . . . , he) is defined to be an SI-sequence
if it is symmetric and its first half is differentiable, namely, (h0, h1 − h0,
h2 − h1, . . . , hb e2 c − hb e2 c−1) satisfies Macaulay’s theorem. It is well known
that every SI-sequence can be a Gorenstein h-vector. By a result of P. Maro-
cia [22] there is a length s smooth punctual scheme Z ⊂ Pn having Hilbert
function agreeing with the first half of the SI-sequence. Define τ(Z) the first
degree in which hi(Z) = |Z|. If we get Z, having the Hilbert function in the
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first part of H = (h0, h1, . . . , hb e2 c, . . . ), followed by s, s, . . . , then we can take

a generic element F in ((IZ)j)
⊥, and its annihilator Ann(F ) contains the orig-

inal ideal of Z, and have the symmetrized Hilbert function (see [19, Theorem
5.21A, Theorem 5.3], [11], and [22]).

Recall that a sequence of integers is unimodal if it does not strictly in-
crease after a strict decrease. It is known that if a Gorenstein h-vector has a
codimension ≤ 3, then it is unimodal ([10]). Furthermore, there are nonuni-
modal Gorenstein h-vectors of codimension ≥ 5 ([5, 7, 18]) and it is still un-
known if there exists a nonunimodal Gorenstein sequence of codimension 4
([12, 20, 24, 28]). In [4, 26], the authors classified Gorenstein h-vectors of small
socle degree. In particular, in [26], the authors showed that nonunimodal
Gorenstein h-vectors of socle degree 4 (respectively, 5) and codimension r exist
if and only if r ≥ 13 (respectively r ≥ 17). In [4], the authors also considered
Gorenstein h-vectors of general socle degree.

There has been a flurry of papers devoted to classifying possible unimodal
or nonunimodal Artinian Gorenstein sequences (see [1–5,8,11,12,15–20,23,25,
28,30]).

Let n and i be positive integers. The i-binomial expansion of n is

n(i) =

(
ni
i

)
+

(
ni−1
i− 1

)
+ · · ·+

(
nj
j

)
,

where ni > ni−1 > · · · ≥ j ≥ 1. We call ni, ni−1, . . . , nj the Macaulay coef-
ficients of n(i) (see [9, page 160]). Following [6], we define, for any integers a
and b,

(n(i))
∣∣b
a

=

(
ni + b

i+ a

)
+

(
ni−1 + b

i− 1 + a

)
+ · · ·+

(
nj + b

j + a

)
,

where we set
(
m
q

)
= 0 for m < q or q < 0. We also use a notation (n(i))

b
a

instead of (n(i))
∣∣b
a

for convenience.
The key ingredients in this paper are two important theorems, so called,

Macaulay’s theorem [21] and Green’s theorems [14]. Together with these two
theorems, we often use another theorem of Migliore, Nagel, and Zanello, namely,
if an h-vector H = (h0, h1, . . . , he) is a Gorenstein sequence, then

(1.1) hi+1 ≥ (hi)(e−i)
∣∣−1
−1 + (hi)(e−i)

∣∣−(e−2i)
−(e−2i−1)

for 1 ≤ i ≤ e
2 ([25]). It is a nice formula to determine if an h-vector is a Goren-

stein sequence, though there are infinite series of non-Gorenstein sequences
having the lower bound in equation (1.1) (see [3, 8]). Macaulay’s theorem
[21] and Green’s theorem [14] play an important role in the study of Hilbert
functions of standard graded Gorenstein algebras. In particular, Macaulay’s
theorem regulates the possible growth of the Hilbert function from one degree
to the next, and Green’s theorem regulates the possible Hilbert functions of
the restriction modulo a general linear form.
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In [4], the authors considered interesting Gorenstein h-vectors of higher socle
degree using Macaulay’s theorem, Green’s theorem, and Gotzmann’s theorem
[13], namely, if H = (h0, h1, . . . , he) with h1 = 4e − 4, e ≥ 6, and hi ≤ h1 for
1 ≤ i ≤ e − 1, is a Gorenstein sequence, then h1 = hi for such i. Moreover,
they constructed nonunimodal Gorenstein sequences H = (h0, h1, . . . , he) with
h1 = 4e− 3, hi = h2 = 4e− 4, for e ≥ 6 and 2 ≤ i ≤ e− 2.

Here, we have an open question as follows.

Question 1.1. Let H = (h0, h1, . . . , he) with h1 = he−1 = 4e − 4, 4e − 3 ≤
h2 ≤ (h1)(1)|+1

+1, hi ≤ h2 for 2 ≤ i ≤ e− 2 and e ≥ 6. Is hi = h2 for such i if H
is a Gorenstein h-vector?

In this paper, we give a complete answer to Question 1.1 when h2 = 4e− 3
with e ≥ 7. In other words, we show that non-unimodal Gorenstein sequences
satisfying the conditions in Question 1.1 don’t exist. However, it is still open
when h2 = 4e − 3 and e = 6. In Section 2, we introduce some preliminary
definitions, and notations. In Section 3, we introduce the main theorem of this
paper and the proofs of Question 1.1 for two cases. In particular, we consider a
Gorenstein h-vector of socle degree 12 in Subsection 3.1 and another Gorenstein
h-vectors of high socle degrees e ≥ 16 in Subsection 3.2. For the other cases of
Question 1.1 when h2 = 4e− 3, 7 ≤ e ≤ 15, and e 6= 12, we show all proofs in
the Appendix.

Acknowledgement. The authors are grateful to the reviewer for their meticu-
lous comments and suggestions on this paper, which are helpful to substantially
improve the original paper.

2. Preliminaries

First, we recall the results of Macaulay’s theorem and Green’s hyperplane
restriction theorem ([14, 21]) which provide the upper bound for the Hilbert
function of the quotient of a given graded algebra (not necessarily Artinian).

Theorem 2.1 ([14,21]). Let hd be the entry of degree d of the Hilbert function
of R/I and let `d be the degree d entry of the Hilbert function of R/(I, L) where
L is a general linear form of R. Then, we have the following inequalities.

(a) Macaulay’s Theorem: hd+1 ≤
(
(hd)(d)

) ∣∣+1

+1
.

(b) Green’s Hyperplane Restriction Theorem: `d ≤
(
(hd)(d)

) ∣∣−1
0
.

Lemma 2.2 ([25, Proposition 8]). If (1, r, h2, . . . , r, 1) is a Gorenstein h-vector,
then (1, r + 1, h2 + 1, . . . , r + 1, 1) is also a Gorenstein h-vector.

Lemma 2.3 ([29]). Let A = R/I be an Artinian Gorenstein algebra, and let
L /∈ I be a linear form of R. Then the h-vector of A can be written as

H := (h0, h1, . . . , he) = (1, b1 + `1, . . . , be−1 + `e−1, be = 1),

where
b = (b1, b2, . . . , be−1, be) with b1 = be = 1
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is the h-vector of R/(I : L)(1) (with the indices shifted by 1), which is a Goren-
stein algebra, and

` = (`0, `1, . . . , `e−1) with `0 = 1

is the h-vector of R/(I, L).

Notation. With notation as in Lemma 2.3, we shall simply call the following
diagram

(2.1)
h0 h1 h2 · · · he−1 he

b1 b2 · · · be−1 be
`0 `1 `2 · · · `e−1

the decomposition of the Hilbert function H. Moreover, we denote an h-vector
(b1, b1, . . . , be) by b and an h-vector (`0, `1, `2, . . . , `e−1) by ` for the rest of this
paper.

3. Gorenstein sequences

In this section, we introduce the main theorem (Theorem 3.18) of this paper
and prove two cases of socle degrees e = 12 and e ≥ 16 only. For the rest of
the cases, when 7 ≤ e ≤ 15 and e 6= 12, we arrange the statements (Proposi-
tions 3.10∼3.17) only in Subsection 3.3 and place the proofs in [27, Appendix]
because these cases can be proved using analogous ideas and methods with the
decomposition tricks in equation (2.1) for Gorenstein sequences.

3.1. A Gorenstein sequence of socle degree 12

Before we prove Proposition 3.4, we introduce the following 3 lemmas first.

Lemma 3.1. Suppose that an h-vector H = (h0, h1, . . . , he) of socle degree e
with h1 = 4e− 2 satisfies one of the following.

(1) h1 ≥ h2 + 2 and e ≥ 9, or
(2) h1 > h2 > h3 and e ≥ 10.

Then H is not a Gorenstein sequence.

Proof. Assume that there exists a Gorenstein Artinian algebraR/I with Hilbert
function H.

(1) We suppose that the Hilbert function H is of the form

H = (1, 4e− 2, 4e− 4− a, . . . , 4e− 4− a, 4e− 2, 1).

Note that for e ≥ 9,

(4e− 2)(e−1) =

(
e

e− 1

)
+

(
e− 1

e− 2

)
+

(
e− 2

e− 3

)
+

(
e− 3

e− 4

)
+

(
e− 5

e− 5

)
+

(
e− 6

e− 6

)
+

(
e− 7

e− 7

)
+

(
e− 8

e− 8

)
.
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By Green’s theorem, `e−1 ≤ 4. So the decomposition of H is of the
form

H : 1 4e− 2 4e− 4− a · · ·
(e−1)-st
4e− 2 1

b : 1 4e− 6 + α · · · 4e− 6 + α 1
` : 1 4e− 3 2− α− a · · · 4− α

Then `2 ≤ 2 and `2 < `e−1, that is, ` is not an O-sequence.
(2) If h1 ≥ h2+2, then by (1) it holds. So we suppose that h2 = 4e−3 > h3,

and the decomposition of H is

H : 1 4e− 2 4e− 3 4e− 4 · · · 4e− 3
(e−1)-st
4e− 2 1

b : 1 4e− 6 4e− 3− β · · · 4e− 3− β 4e− 6 1
` : 1 4e− 3 3 β − 1 · · · β 4

If β ≤ 4, then `3 ≤ 3 and `3 = β − 1 < β = `e−2. In other words,
` is not an O-sequence. If β ≥ 5, then by (1) b is not a Gorenstein
sequence.

This completes the proof. �

Lemma 3.2. The h-vector

H = (1, 41, 41, 40, h3, . . . , h7, 40, 41,
(e−1)-st

41 , 1)

with h3 ≤ 39 and e ≥ 11 is not a Gorenstein sequence.

Proof. Suppose there exists a Gorenstein Artinian algebra with Hilbert function
H. First, if e ≥ 12, then by equation (1.1), h3 ≥ 40, and so H is not a Gorestein
sequence. So we assume that e = 11. By Green’s theorem, `8 ≤ 6, `9 ≤ 5, and
`10 ≤ 4. The decomposition of H is

H : 1 41 41 40 39− a · · · 39− a 40 41
10-th
41 1

b : 1 41− `10 41− `9 40− `8 · · · 39− `7 − a 40− `8 41− `9 41− `10 1
` : 1 40 `10 `9 − 1 `8 − a− 1 · · · `7 `8 `9 `10

If `9 ≤ 4, then `3 = `9 − 1 ≤ 3 and `3 = `9 − 1 < `9. So ` is not an
O-sequence, i.e., `9 = 5. Moreover, if a > 0, then `4 = `8 − a − 1 ≤ 4, and
`4 = `8 − a − 1 < `8, that is, ` is not an O-sequence. Hence we rewrite the
decomposition of H as

H : 1 41 41 40 39 · · · 39 40 41
10-th
41 1

b : 1 41− `10 36 40− `8 · · · 39− `7 40− `8 36 41− `10 1
` : 1 40 `10 4 `8 − 1 · · · `7 `8 5 `10

(1) Suppose `10 ≤ 2. Then (`2, `3) = (`10, `3) = (≤ 2, 4), i.e., ` is not an
O-sequence.

(2) Assume `10 = 3. Then (b2, b3) = (38, 36), and so, by Lemma 3.1, b is
not a Gorenstein sequence.
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(3) Assume `10 = 4. If `8 ≤ 5, then `4 = `8−1 ≤ 4, and so `4 = `8−1 < `8.
Thus ` is not an O-sequence. If `8 = 6, then (b2, b3, b4) = (37, 36, 34),
i.e., by [4, Lemma 3.8], b is not a Gorenstein sequence.

This completes the proof. �

Lemma 3.3. The h-vector

H = (1, 41, 40, 40, 39, 37, 37, 39, 40, 40,
10-th
41 , 1)

is not a Gorenstein sequence.

Proof. Suppose there exists a Gorenstein Artinian algebra with Hilbert function
H. By Green’s theorem, `6 ≤ 8, `7 ≤ 8, `8 ≤ 6, `9 ≤ 5, and `10 ≤ 4. The
decomposition of H is

H : 1 41 40 40 39 37 37 39 40 40
10-th
41 1

b : 1 41− `10 40− `9 40− `8 39− `7 37− `6 39− `7 40− `8 40− `9 41− `10 1
` : 1 40 `10 − 1 `9 `8 − 1 `7 − 2 `6 `7 `8 − 1 `9 `10

Since `5 = `7 − 2 ≥ 6, we have `7 ≥ 8, i.e., `7 = 8, and so `6 = 7. Moreover,
`2 = `10−1 ≥ 3, and thus `10 = 4. It follows that `3 = `9 = 4 and `4 = `8−1 =
5. Hence we have (b2, b3, b4) = (37, 36, 34), and so by [4, Lemma 3.8], b is not
a Gorenstein sequence. This completes the proof. �

Proposition 3.4 (e = 12). Let H = (h0, h1, h2, . . . , h10, h11, h12) be a sym-
metric sequence with

h1 = 44, h2 = 45, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 = 45 for every 2 ≤ i ≤
10.

Proof. Suppose there is an Artinian Gorenstein algebra R/I with Hilbert func-
tion H. From equation (1.1), there are 55 possible nonunimodal h-vectors
(see [27, Appendix]). We shall show that all 55-cases cannot be Gorenstein
sequences.

We shall prove this by 4-cases for (h3, h4), namely,

(h3, h4) = (44, 44), (44, 45), (45, 44), (45, 45).

By Green’s theorem, we have

`10 ≤ 5 and `11 ≤ 4.

(1) We first consider the case (h3, h4) = (44, 44), i.e.,

H = (1, 44, 45, 44, 44, h5, h6, h7, 44, 44, 45, 44, 1).

Note that `8 ≤ 8, `9 ≤ 5, `10 ≤ 5, and `11 ≤ 4.

Assume the decomposition of H is

H : 1 44 45 44 44 h5 h6 h7 44 44 45 44 1
b : 1 44− `11 45− `10 44− `9 − − − 44− `8 44− `9 45− `10 44− `11 1
` : 1 43 1 + `11 `10 − 1 `9 − − − `8 `9 `10 `11
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Since ` is an O-sequence, we have

`3 = `10 − 1 ≥ 4, i.e., `10 = 5, (by Green’s theorem `10 ≤ 5), and
`4 = `9 ≥ 5, so `9 = 5, (since `10 = 5).

Hence the decomposition of H is

H : 1 44 45 44 44 42 41 42 44 44 45 44 1
b : 1 44− `11 40 39 − − − 44− `8 39 40 44− `11 1
` : 1 43 1 + `11 4 5 − − − `8 5 5 `11

Since ` is an O-sequence, one can see that `2 = `11+1 ≥ 3, i.e., `11 ≥ 2.
(a) If `11 = 2, then (b2, b3) = (42, 40). By equation (1.1), b is not a

Gorenstein sequence (see also Lemma 3.1(1)).
(b) If `11 = 3, then (b2, b3, b4) = (41, 40, 39). By [4, Lemma 3.8(b)], b

is not a Gorenstein sequence.
(c) If `11 = 4, then (b2, b3, b4) = (40, 40, 39). By [4, Proposition 3.14],

b is not a Gorenstein sequence.
(2) We consider the case (h3, h4) = (44, 45), i.e.,

H = (1, 44, 45, 44, 45, h5, h6, h7, 45, 44, 45, 44, 1).

Note that `8 ≤ 9, `9 ≤ 5, `10 ≤ 5, and `11 ≤ 4.
Assume the decomposition of H is

H : 1 44 45 44 45 h5 h6 h7 45 44 45 44 1
b : 1 44− `11 45− `10 44− `9 − − − 45− `8 44− `9 45− `10 44− `11 1
` : 1 43 1 + `11 `10 − 1 `9 + 1 − − − `8 `9 `10 `11

Since ` is an O-sequence and `10 − 1 = `3 < `10, we have

`3 = `10 − 1 ≥ 4, i.e., `10 = 5, (by Green’s theorem `10 ≤ 5), and
`4 = `9 + 1 ≥ 5, so `9 ≥ 4, i.e., `9 = 5, (since `10 = 5).

But, then (`3, `4) = (4, 6) is not an O-sequence.
(3) We consider the case (h3, h4) = (45, 44), i.e.,

H = (1, 44, 45, 45, 44, h5, h6, h7, 44, 45, 45, 44, 1).

Note that `8 ≤ 8, `9 ≤ 6, `10 ≤ 5, and `11 ≤ 4.
Assume the decomposition of H is

H : 1 44 45 45 44 h5 h6 h7 44 45 45 44 1
b : 1 44− `11 45− `10 45− `9 − − − 44− `8 45− `9 45− `10 44− `11 1
` : 1 43 1 + `11 `10 `9 − 1 − − − `8 `9 `10 `11

Since ` is an O-sequence and `9 − 1 = `4 < `9, we have

`4 = `9 − 1 ≥ 5, i.e., `9 = 6, (by Green’s theorem `9 ≤ 6), and
`10 = 4, 5.

H : 1 44 45 45 44 h5 h6 h7 44 45 45 44 1
b : 1 44− `11 45− `10 39 − − − 44− `8 39 45− `10 44− `11 1
` : 1 43 1 + `11 `10 5 − − − `8 6 `10 `11

(a) If `10 = 4, i.e., b3 = 41, then by equation (1.1), (b3, b4) = (41, 39)
is not a Gorenstein sequence.
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(b) Let `10 = 5.
(i) If `11 ≤ 1, then `2 = `11 + 1 ≤ 2 < 5 = `4, i.e., ` is not an

O-sequence.
(ii) If `11 = 2, then by Lemma 3.1, (b2, b3) = (42, 40) is not a

Gorenstein sequence.
(iii) If `11 = 3, then by [4, Lemma 3.8], (b2, b3, b4) = (41, 40, 39)

is not a Gorenstein sequence.
(iv) Suppose `11 = 4. Then by [4, Proposition 3.14], (b2, b3, b4) =

(40, 40, 39) is not a Gorenstein sequence.
(4) We consider the case (h3, h4) = (45, 45), i.e.,

H = (1, 44, 45, 45, 45, h5, h6, h7, 45, 45, 45, 44, 1).

Note that `8 ≤ 9, `9 ≤ 6, `10 ≤ 5, and `11 ≤ 4.
(a) Suppose 42 ≤ h5 ≤ 44. Then the decomposition of H is

H : 1 44 45 45 45 h5 h6 h7 45 45 45 44 1
b : 1 44− `11 45− `10 45− `9 45− `8 − − 45− `8 45− `9 45− `10 44− `11 1
` : 1 43 1 + `11 `10 `9 h5 + `8 − 45 − − `8 `9 `10 `11

Since ` is an O-sequence and h5 ≤ 44, we get that h5 + `8 − 45 ≤
`8 − 1, and so we have

h5 + `8 − 45 ≥ 6, `8 ≥ 51− h5 ≥ 7, i.e., `8 = 7, 8, 9, and
`4 = `9 ≥ 5, i.e., `9 = 5, 6.

(i) Assume `9 = 5. Since b5 = 45− `8 ≤ 38, we have (b4, b5) =
(40,≤ 38). However, by equation (1.1), so b is not a Goren-
stein sequence.

(ii) If `9 = 6 and `8 = 8, 9, then b4 = 39 and b5 = 45− `8 ≤ 37.
But, by equation (1.1), b is not a Gorenstein sequence.

(iii) Assume `9 = 6 and `8 = 7. Since ` is an O-sequence, one
can see that `5 = h5 − 38 ≥ 6. Hence h5 = 44. Moreover,
by equation (1.1), b3 = 45 − `10 ≥ 40, i.e., `10 = 5. Hence
the decomposition of H is

H : 1 44 45 45 45 44 h6 44 45 45 45 44 1
b : 1 44− `11 40 39 38 − − 38 39 40 44− `11 1
` : 1 43 1 + `11 5 6 6 − − 7 6 5 `11

(A) If `11 ≤ 2, then (`2, `3) = (≤ 3, 5) is not an O-sequence.
(B) If `11 = 3, then [4, Lemma 3.8] (b2, b3, b4) = (41, 40, 39)

is not a Gorenstein sequence.
(C) If `11 = 4, then by [4, Proposition 3.14], b is not a

Gorenstein sequence as well.
(b) We now consider the case with h5 = 45, i.e.,

H = (1, 44, 45, 45, 45, 45, 44, 45, 45, 45, 45, 44, 1).

Note that `7 ≤ 9, `8 ≤ 9, `9 ≤ 6, `10 ≤ 5, and `11 ≤ 4.
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Assume the decomposition of H is

H : 1 44 45 45 45 45 44 45 45 45 45 44 1
b : 1 44− `11 45− `10 45− `9 45− `8 45− `7 45− `7 45− `8 45− `9 45− `10 44− `11 1
` : 1 43 1 + `11 `10 `9 `8 `7 − 1 `7 `8 `9 `10 `11

Since ` is an O-sequence, we see that
`2 = `11 + 1 ≥ 3,
`3 = `10 ≥ 4,
`4 = `9 ≥ 5,
`5 = `8 ≥ 6, and
`6 = `7 − 1 ≥ 7,

i.e.,


`7 = 8, 9,
`8 = 6, 7, 8, 9,
`9 = 5, 6,
`10 = 4, 5, and
`11 = 2, 3, 4.

(i) Let `11 = 2, i.e., b2 = 42. Then the decomposition of H is

H : 1 44 45 45 45 45 44 45 45 45 45 44 1
b : 1 42 45− `10 45− `9 45− `8 45− `7 45− `7 45− `8 45− `9 45− `10 42 1
` : 1 43 3 `10 `9 `8 `7 − 1 `7 `8 `9 `10 2

(A) If `10 = 4, then (b2, b3, b4) = (42, 41,≤ 40) by Lemma
3.1(b), b is not a Gorenstein sequence.

(B) If `10 = 5, then (b2, b3) = (42, 40), i.e., by Lemma
3.1(a), b is not a Gorenstein sequence as well.

(ii) Let `11 = 3, i.e., b2 = 41. Then the decomposition of H is

H : 1 44 45 45 45 45 44 45 45 45 45 44 1
b : 1 41 45− `10 45− `9 45− `8 45− `7 45− `7 45− `8 45− `9 45− `10 41 1
` : 1 43 4 `10 `9 `8 `7 − 1 `7 `8 `9 `10 3

(A) Let (`9, `10) = (5, 4). Then (b2, b3, b4, b5) = (41, 41, 40,
≤ 39), and thus, by Lemma 3.2, b is not a Gorenstein
sequence.

(B) Now assume (`9, `10) = (6, 4). Then (`10, `9) = (`3, `4)
= (4, 6) is not an O-sequence.

(C) So we assume that (`9, `10) = (5, 5).
(D) Let (`7, `8) = (8, 6). Then (b2, b3, b4, b5, b6) = (41, 40,

40, 39, 37). By Lemma 3.3, b is not a Gorenstein se-
quence.

(E) If (`7, `8) = (9, 6), then (`5, `6) = (`8, `7− 1) = (6, 8) is
not an O-sequence.

(F) If `8 ≥ 7, then (b4, b5) = (40,≤ 38), and so by equa-
tion (1.1), b is not a Gorenstein sequence.

(G) If (`9, `10) = (6, 5), then (b2, b3, b4) = (41, 40, 39), and
so, by [4, Lemma 3.8], b is not a Gorenstein sequence.

(iii) If `11 = 4, then the decomposition of H is

H : 1 44 45 45 45 45 44 45 45 45 45 44 1
b : 1 40 45− `10 45− `9 45− `8 45− `7 45− `7 45− `8 45− `9 45− `10 40 1
` : 1 43 5 `10 `9 `8 `7 − 1 `7 `8 `9 `10 4

(A) Let (`9, `10) = (5, 4). If `8 = 6, then, by the proof
of Proposition 3.14, (b2, b3, b4, b5) = (40, 41, 40, 39) is
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not a Gorenstein sequence. If `8 ≥ 7, then by equa-
tion (1.1), (b2, b3, b4, b5) = (40, 41, 40,≤ 38) is not a
Gorenstein sequence.

(B) Let (`9, `10) = (5, 5). Since `8 ≥ 6, we get that (b3, b4,
b5) = (40, 40,≤ 39), i.e., by [4, Proposition 3.14] b is
not a Gorenstein sequence.

(C) Let (`9, `10) = (6, 4). Then (b2, b3, b4) = (40, 41, 39),
and by equation (1.1), b is not a Gorenstein sequence
(see also Proposition 3.14).

(D) Let (`9, `10) = (6, 5). Then (b2, b3, b4) = (40, 40, 39),
and by [4, Proposition 3.14], b is not a Gorenstein se-
quence.

This completes the proof. �

3.2. Gorenstein sequences of socle degrees ≥ 16

We first introduce the following lemma.

Lemma 3.5. Let e ≥ 20. Then for every 3 ≤ i ≤ e
2 − 1,

4e− 3 <

(
e− i+ 2

2

)
−
(
e− 2i

2

)
=

1

2
(i+ 2)(2e− 3i+ 1).

In particular, the binomial expansion of 4e− 3 in degree (e− i) is of the form

(3.1) (4e− 3)(e−i) =

(
e− i+ 1

e− i

)
+ · · ·+

(
k + 1

k

)
+

(
k − 1

k − 1

)
+ · · ·+

(
m

m

)
,

where e− 2i ≤ k ≤ e− i+ 1.

Proof. Define a function

fe(i) = (4e− 3)− 1

2
(i+ 2)(2e− 3i+ 1)

=
1

2
(3i2 − (2e− 5)i− 8).

Note that for 3 ≤ i ≤ e
2−1, fe(i) has the maximum value at i = 3 and i = e

2−1.
Moreover, for e ≥ 20,

fe(3) = 17− e ≤ 0,

fe(
e

2
− 1) =

1

8
(−e2 + 22e− 40) ≤ 0.

Hence we obtain the binomial expansion of 4e− 3 in degree (e− i) as in equa-
tion (3.1). This completes the proof. �

Proposition 3.6. For e ≥ 16, if an O-sequence of socle degree e of the form

(1, 4e− 4, 4e− 3, h3, . . . , he−3, 4e− 3, 4e− 4, 1)
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is a Gorenstein sequence and

hi+1 = (hi)(e−i)|−1−1 + (hi)(e−i)|
−(e−2i)
−(e−2i−1)

for 3 ≤ i ≤ e
2 − 1, then

hi = 4e− 3

for every 3 ≤ i ≤ e− 2.

Proof. By a simple calculation, one can easily show that it holds for 16 ≤ i ≤
19. So we suppose that e ≥ 20. By Lemma 3.5, the binomial expansion of
(4e− 3) in degree (e− i) with 3 ≤ i ≤ e

2 − 1 is of the form

(4e− 3)(e−i) =

(
e− i+ 1

e− i

)
+ · · ·+

(
k + 1

k

)
+

(
k − 1

k − 1

)
+ · · ·+

(
m

m

)
,

where e− 2i ≤ k ≤ e− i+ 1. Hence, for 3 ≤ i ≤ e
2 − 1,

hi+1 = (4e− 3)(e−i)
∣∣−1
−1 + (4e− 3)(e−i)

∣∣−(e−2i)
−(e−2i−1)

=

(
e− i+ 1

e− i

)
+ · · ·+

(
k + 1

k

)
+

(
k − 1

k − 1

)
+ · · ·+

(
m

m

)∣∣∣∣−1
−1

+

(
e− i+ 1

e− i

)
+ · · ·+

(
k + 1

k

)
+

(
k − 1

k − 1

)
+ · · ·+

(
m

m

)∣∣∣∣−(e−2i)
−(e−2i−1)

=

[(
e− i+ 1

e− i

)
+ · · ·+

(
k + 1

k

)
+ (k −m)− (e− i− k + 1)

]
+ (e− i− k + 1)

=

(
e− i+ 1

e− i

)
+ · · ·+

(
k + 1

k

)
+

(
k − 1

k − 1

)
+ · · ·+

(
m

m

)
= 4e− 3,

as we wished. �

We now introduce a simple way to construct a Gorenstein algebra having
certain unimodal h-vectors (see [19] for details).

Theorem 3.7 ([19, Theorem 5.21A, Theorem 5.3]). If Z = {℘1, . . . , ℘s} is a
finite set of reduced points in Pn, then Z is an annihilating scheme for f if and
only if f has an additive decomposition

f = c1L
[e]
℘1

+ · · ·+ csL
[e]
℘s
,

where L℘i
is the linear form corresponding to ℘i.

Corollary 3.8. Let H = (h0, h1, . . . , he) be an SI-sequence. Then H is a
Gorenstein h-vector.



82 J. P. PARK AND Y. S. SHIN

Proof. Let s = max{hi} and τ be the first degree in which hi = |Z|. Assume
Z = {℘1, . . . , ℘s} is a finite set of reduced s-points in the projective space Pn
with n = h1 − 1 such that the Hilbert function of Z is

HZ : 1 h1 · · · hτ → .

Note that this is always possible since an SI-sequence is a differentiable O-
sequence.

Define

f = c1L
[e]
℘1

+ · · ·+ csL
[e]
℘s
,

where L℘i
is the linear form corresponding to ℘i. By Theorem 3.7, we see that

the Hilbert function of R/Ann(f) is H, as we wished. �

The following corollary is immediate from Corollary 3.8. We omit the proof.

Corollary 3.9. If H = (1, 4e− 4, 4e− 3, . . . , 4e− 3, 4e− 4, 1) is a symmetric
h-vector with

h2 = hi = 4e− 3

for i = 2, . . . , e− 2 and e ≥ 7, then H is a Gorenstein h-vector.

3.3. The main theorem

We shall state the following propositions for the cases of socle degrees 7 ≤
e ≤ 15 and e 6= 12. Their proofs will be in the Appendix in [27].

Proposition 3.10 (e = 7). Let H = (h0, h1, h2, . . . , h6, h7) be a Gorenstein
sequence. Assume

h1 = 24, h2 = 25, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 for 2 ≤ i ≤ 5.

Proposition 3.11 (e = 8). Let H = (h0, h1, h2, . . . , h7, h8). Assume

h1 = 28, h2 = 29, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 = 29 for 2 ≤ i ≤ 6.

Proposition 3.12 (e = 9). Let H = (h0, h1, h2, . . . , h7, h8, h9). Assume

h1 = 32, h2 = 33, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 = 33 for 2 ≤ i ≤ 7.

Proposition 3.13 (e = 10). Let H = (h0, h1, h2, . . . , h8, h9, h10). Assume

h1 = 36, h2 = 37, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 for every 2 ≤ i ≤ 8.

Proposition 3.14 (e = 11). Let H = (h0, h1, h2, . . . , h9, h10, h11). Assume

h1 = 40, h2 = 41, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 for every 2 ≤ i ≤ 9.
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Proposition 3.15 (e = 13). Let H = (h0, h1, h2, . . . , h11, h12, h13). Assume

h1 = 48, h2 = 49, and hi ≤ h2 for all i ≥ 3.

Then H is a Gorenstein sequence if and only if hi = h2 for every 2 ≤ i ≤ 11.

Proposition 3.16 (e = 14). Let H = (h0, h1, h2, . . . , h11, h12, h13, h14). As-
sume

h1 = 52, h2 = 53, and hi ≤ h2 for 2 ≤ i ≤ 12.

Then H is a Gorenstein sequence if and only if hi = h2 for every 2 ≤ i ≤ 12.

Proposition 3.17 (e = 15). Let H = (h0, h1, h2, . . . , h13, h14, h15). Assume

h1 = 56, h2 = 57, and hi ≤ h2 for 2 ≤ i ≤ 13.

Then H is a Gorenstein sequence if and only if hi = h2 for every 2 ≤ i ≤ 13.

We now introduce the main theorem in this paper.

Theorem 3.18. For e ≥ 7, if an O-sequence

H = (1, 4e− 4, 4e− 3, h3, . . . , he−2, 4e− 3, 4e− 4, 1)

with hi ≤ 4e− 3 for 2 ≤ i ≤ e− 2 is a Gorenstein h-vector, then

hi = h2 = 4e− 3

for such i.

Proof. (1) For 7 ≤ e ≤ 15, see Propositions 3.10, 3.11, 3.12, 3.13, 3.14, 3.4,
3.15, 3.16, 3.17.

(2) For e ≥ 16, see Proposition 3.6. �
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