Acknowledgement
The authors wish to thank Frank-Olaf Schreyer for his useful suggestions about the topics in this paper. We thank Mikhail Zaidenberg for valuable comments and suggestions on an earlier draft.
References
- T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), no. 2, 347-357. https://doi.org/10.1007/BF01389057
- A. Alzati and J. C. Sierra, Special birational transformations of projective spaces, Adv. Math. 289 (2016), 567-602. https://doi.org/10.1016/j.aim.2015.11.018
- M. Andreatta and J. A. Wi'sniewski, On contractions of smooth varieties, J. Algebraic Geom. 7 (1998), no. 2, 253-312.
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. https://doi.org/10.2307/2372795
- I. Cheltsov, J. Park, Y. Prokhorov, and M. Zaidenberg, Cylinders in Fano varieties, EMS Surv. Math. Sci. 8 (2021), no. 1-2, 39-105. https://doi.org/10.4171/emss/44
- I. Cheltsov, J. Park, and J. Won, Cylinders in singular del Pezzo surfaces, Compos. Math. 152 (2016), no. 6, 1198-1224. https://doi.org/10.1112/S0010437X16007284
- I. Cheltsov, J. Park, and J. Won, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 7, 1537-1564. https://doi.org/10.4171/JEMS/622
- O. Debarre, A. Iliev, and L. Manivel, Special prime Fano fourfolds of degree 10 and index 2, in Recent advances in algebraic geometry, 123-155, London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015.
- I. V. Dolgachev, Classical Algebraic Geometry, Cambridge University Press, Cambridge, 2012. https://doi.org/10.1017/CBO9781139084437
- H. Finkelnberg and J. Werner, Small resolutions of nodal cubic threefolds, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 2, 185-198. https://doi.org/10.1016/S1385-7258(89)80026-5
- N. P. Gushel', Fano varieties of genus 6, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 6, 1159-1174, 1343.
- B. Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), no. 1, 1-23. https://doi.org/10.1023/A:1001706324425
- B. Hassett and K.-W. Lai, Cremona transformations and derived equivalences of K3 surfaces, Compos. Math. 154 (2018), no. 7, 1508-1533. https://doi.org/10.1112/s0010437x18007145
- M. Hoff and G. Stagliano, New examples of rational Gushel-Mukai fourfolds, Math. Z. 296 (2020), no. 3-4, 1585-1591. https://doi.org/10.1007/s00209-020-02498-5
- P. Ionescu, Embedded projective varieties of small invariants, in Algebraic geometry, Bucharest 1982 (Bucharest, 1982), 142-186, Lecture Notes in Math., 1056, Springer, Berlin, 1984. https://doi.org/10.1007/BFb0071773
- V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516-562, 717.
- V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, in Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999.
- T. Kambayashi and M. Miyanishi, On flat fibrations by the affine line, Illinois J. Math. 22 (1978), no. 4, 662-671. http://projecteuclid.org/euclid.ijm/1256048473 https://doi.org/10.1215/ijm/1256048473
- T. Kambayashi and D. Wright, Flat families of affine lines are affine-line bundles, Illinois J. Math. 29 (1985), no. 4, 672-681. http://projecteuclid.org/euclid.ijm/1256045502 https://doi.org/10.1215/ijm/1256045502
- T. Kishimoto, Y. Prokhorov, and M. Zaidenberg, Group actions on affine cones, in Affine algebraic geometry, 123-163, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011. https://doi.org/10.1090/crmp/054/08
- T. Kishimoto, Y. Prokhorov, and M. Zaidenberg, Affine cones over Fano threefolds and additive group actions, Osaka J. Math. 51 (2014), no. 4, 1093-1112. http://projecteuclid.org/euclid.ojm/1414761913
- E. L. Livorni, On the existence of some surfaces, in Algebraic geometry (L'Aquila, 1988), 155-179, Lecture Notes in Math., 1417, Springer, Berlin, 1990. https://doi.org/10.1007/BFb0083340
- S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 9, 3000-3002. https://doi.org/10.1073/pnas.86.9.3000
- J. Park, 𝔾a-actions on the complements of hypersurfaces, Transformation Groups, 2020. https://doi.org/10.1007/s00031-020-09589-x
- Y. Prokhorov and M. Zaidenberg, Examples of cylindrical Fano fourfolds, Eur. J. Math. 2 (2016), no. 1, 262-282. https://doi.org/10.1007/s40879-015-0051-7
- Y. Prokhorov and M. Zaidenberg, New examples of cylindrical Fano fourfolds, in Algebraic varieties and automorphism groups, 443-463, Adv. Stud. Pure Math., 75, Math. Soc. Japan, Tokyo, 2017. https://doi.org/10.2969/aspm/07510443
- Y. Prokhorov and M. Zaidenberg, Affine cones over Fano-Mukai fourfolds of genus 10 are flexible, Arxiv:2005.12092, 2020.
- V. V. Przhiyalkovskii, I. A. Chel'tsov, and K. A. Shramov, Izv. Math. 69 (2005), no. 2, 365-421; translated from Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 2, 145-204. https://doi.org/10.1070/IM2005v069n02ABEH000533
- N. I. Shepherd-Barron, The Hasse principle for 9-nodal cubic threefolds, Arxiv:1210.5178, 2012.
- F. Xu, On the smooth linear section of the Grassmannian Gr(2, n), PhD thesis, Rice Univeristy, 2012.