DOI QR코드

DOI QR Code

ON CYLINDRICAL SMOOTH RATIONAL FANO FOURFOLDS

  • Hang, Nguyen Thi Anh (Department of Mathematics Thai Nguyen University of Education Thai Nguyen Province) ;
  • Hoff, Michael (Mathematik und Informatik Universitat des Saarlandes) ;
  • Truong, Hoang Le (Mathematik und Informatik Universitat des Saarlandes and Institute of Mathematics VAST and Thang Long Institute of Mathematics and Applied Sciences)
  • Received : 2021.03.01
  • Accepted : 2021.09.24
  • Published : 2022.01.01

Abstract

We construct new families of smooth Fano fourfolds with Picard rank 1 which contain open 𝔸1-cylinders, that is, Zariski open subsets of the form Z × 𝔸1, where Z is a quasiprojective variety. In particular, we show that every Mukai fourfold of genus 8 is cylindrical and there exists a family of cylindrical Gushel-Mukai fourfolds.

Keywords

Acknowledgement

The authors wish to thank Frank-Olaf Schreyer for his useful suggestions about the topics in this paper. We thank Mikhail Zaidenberg for valuable comments and suggestions on an earlier draft.

References

  1. T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), no. 2, 347-357. https://doi.org/10.1007/BF01389057
  2. A. Alzati and J. C. Sierra, Special birational transformations of projective spaces, Adv. Math. 289 (2016), 567-602. https://doi.org/10.1016/j.aim.2015.11.018
  3. M. Andreatta and J. A. Wi'sniewski, On contractions of smooth varieties, J. Algebraic Geom. 7 (1998), no. 2, 253-312.
  4. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. https://doi.org/10.2307/2372795
  5. I. Cheltsov, J. Park, Y. Prokhorov, and M. Zaidenberg, Cylinders in Fano varieties, EMS Surv. Math. Sci. 8 (2021), no. 1-2, 39-105. https://doi.org/10.4171/emss/44
  6. I. Cheltsov, J. Park, and J. Won, Cylinders in singular del Pezzo surfaces, Compos. Math. 152 (2016), no. 6, 1198-1224. https://doi.org/10.1112/S0010437X16007284
  7. I. Cheltsov, J. Park, and J. Won, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 7, 1537-1564. https://doi.org/10.4171/JEMS/622
  8. O. Debarre, A. Iliev, and L. Manivel, Special prime Fano fourfolds of degree 10 and index 2, in Recent advances in algebraic geometry, 123-155, London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015.
  9. I. V. Dolgachev, Classical Algebraic Geometry, Cambridge University Press, Cambridge, 2012. https://doi.org/10.1017/CBO9781139084437
  10. H. Finkelnberg and J. Werner, Small resolutions of nodal cubic threefolds, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 2, 185-198. https://doi.org/10.1016/S1385-7258(89)80026-5
  11. N. P. Gushel', Fano varieties of genus 6, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 6, 1159-1174, 1343.
  12. B. Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), no. 1, 1-23. https://doi.org/10.1023/A:1001706324425
  13. B. Hassett and K.-W. Lai, Cremona transformations and derived equivalences of K3 surfaces, Compos. Math. 154 (2018), no. 7, 1508-1533. https://doi.org/10.1112/s0010437x18007145
  14. M. Hoff and G. Stagliano, New examples of rational Gushel-Mukai fourfolds, Math. Z. 296 (2020), no. 3-4, 1585-1591. https://doi.org/10.1007/s00209-020-02498-5
  15. P. Ionescu, Embedded projective varieties of small invariants, in Algebraic geometry, Bucharest 1982 (Bucharest, 1982), 142-186, Lecture Notes in Math., 1056, Springer, Berlin, 1984. https://doi.org/10.1007/BFb0071773
  16. V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516-562, 717.
  17. V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, in Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999.
  18. T. Kambayashi and M. Miyanishi, On flat fibrations by the affine line, Illinois J. Math. 22 (1978), no. 4, 662-671. http://projecteuclid.org/euclid.ijm/1256048473 https://doi.org/10.1215/ijm/1256048473
  19. T. Kambayashi and D. Wright, Flat families of affine lines are affine-line bundles, Illinois J. Math. 29 (1985), no. 4, 672-681. http://projecteuclid.org/euclid.ijm/1256045502 https://doi.org/10.1215/ijm/1256045502
  20. T. Kishimoto, Y. Prokhorov, and M. Zaidenberg, Group actions on affine cones, in Affine algebraic geometry, 123-163, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011. https://doi.org/10.1090/crmp/054/08
  21. T. Kishimoto, Y. Prokhorov, and M. Zaidenberg, Affine cones over Fano threefolds and additive group actions, Osaka J. Math. 51 (2014), no. 4, 1093-1112. http://projecteuclid.org/euclid.ojm/1414761913
  22. E. L. Livorni, On the existence of some surfaces, in Algebraic geometry (L'Aquila, 1988), 155-179, Lecture Notes in Math., 1417, Springer, Berlin, 1990. https://doi.org/10.1007/BFb0083340
  23. S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 9, 3000-3002. https://doi.org/10.1073/pnas.86.9.3000
  24. J. Park, 𝔾a-actions on the complements of hypersurfaces, Transformation Groups, 2020. https://doi.org/10.1007/s00031-020-09589-x
  25. Y. Prokhorov and M. Zaidenberg, Examples of cylindrical Fano fourfolds, Eur. J. Math. 2 (2016), no. 1, 262-282. https://doi.org/10.1007/s40879-015-0051-7
  26. Y. Prokhorov and M. Zaidenberg, New examples of cylindrical Fano fourfolds, in Algebraic varieties and automorphism groups, 443-463, Adv. Stud. Pure Math., 75, Math. Soc. Japan, Tokyo, 2017. https://doi.org/10.2969/aspm/07510443
  27. Y. Prokhorov and M. Zaidenberg, Affine cones over Fano-Mukai fourfolds of genus 10 are flexible, Arxiv:2005.12092, 2020.
  28. V. V. Przhiyalkovskii, I. A. Chel'tsov, and K. A. Shramov, Izv. Math. 69 (2005), no. 2, 365-421; translated from Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 2, 145-204. https://doi.org/10.1070/IM2005v069n02ABEH000533
  29. N. I. Shepherd-Barron, The Hasse principle for 9-nodal cubic threefolds, Arxiv:1210.5178, 2012.
  30. F. Xu, On the smooth linear section of the Grassmannian Gr(2, n), PhD thesis, Rice Univeristy, 2012.