DOI QR코드

DOI QR Code

템퍼드 마르텐사이트강의 수소취성에 미치는 Cr 및 Mo 함량의 영향

Effect of Cr and Mo Contents on Hydrogen Embrittlement of Tempered Martensitic Steels

  • 김상규 (서울과학기술대학교 신소재공학과) ;
  • 김재윤 (서울과학기술대학교 신소재공학과) ;
  • 신희창 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Sang-Gyu, Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jae-Yun, Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hee-Chang, Sin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Byoungchul, Hwang (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2022.09.06
  • 심사 : 2022.10.17
  • 발행 : 2022.11.27

초록

The effect of Cr and Mo contents on the hydrogen embrittlement of tempered martensitic steels was investigated in this study. After the steels with different Cr and Mo contents were austenitized at 820 ℃ for 90 min, they were tempered at 630 ℃ for 120 min. The steels were composed of fully tempered martensite with a lath-type microstructure, but the characteristics of the carbides were dependent on the Cr and Mo contents. As the Cr and Mo contents increased, the volume fraction of film-like cementite and prior austenite grain size decreased. After hydrogen was introduced into tensile specimens by electrochemical charging, a slow strain-rate test (SSRT) was conducted to investigate hydrogen embrittlement behavior. The SSRT results revealed that the steel with lower Cr or lower Mo content showed relatively poor hydrogen embrittlement resistance. The hydrogen embrittlement resistance of the tempered martensitic steels increased with increasing Mo content, because the reduction in the film-like cementite and prior austenite grain size plays an important role in improving hydrogen embrittlement resistance. The results indicate that controlling the Cr and Mo contents is essential to achieving a tempered martensitic steel with a combination of high strength and excellent hydrogen embrittlement resistance.

키워드

과제정보

This research was financially supported by the Technology Innovation Program (Grant No. 20015945) funded by the Ministry of Trade, Industry and Energy (MOTIE) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2022R1A2C2004834). The authors thank Drs. Hyun-Joo Seo and Hwan-Gyo Jung, POSCO, for providing the steel specimens that were used in this study.

참고문헌

  1. A. Nagao, M. L. Martin, M. Dadfarnia, P. Sofronis and I. M. Robertson, Acta Mater., 74, 244 (2014).
  2. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao and J. Yang, Int. J. Hydrogen Energy, 37, 1048 (2012).
  3. P. Xu, J. Zheng, P. Liu, R. Chen, F. Kai and L. Li, J. Loss Prev. Process Ind., 22, 950 (2009).
  4. J. Lee, T. Lee, Y. J. Kwon, D. J. Moon, J. Y. Yoo and C. S. Lee, Corros. Rev., 33, 433 (2015).
  5. S. J. Yoon, H. J. Lee, K. B. Yoon, Y. W. Ma and U. B. Baek, J. Mech. Sci. Technol., 32, 637 (2018).
  6. K. M. Ryu, D. G. Lee, J. Moon, C. H. Lee, T. H. Lee, J. S. Lee and D. W. Suh, Met. Mater. Int., 27, 425 (2021).
  7. S. I. Lee, J. Lee and B. Hwang, Mater. Sci. Eng., A, 758, 56 (2019).
  8. S. I. Lee, S. Y. Lee, J. Han and B. Hwang, Mater. Sci. Eng., A, 742, 334 (2019).
  9. S. I. Lee, S. Y. Lee, S. G. Lee, H. G. Jung and B. Hwang, Met. Mater. Int., 24, 1221 (2018).
  10. S. Y. Lee, S. I. Lee and B. Hwang, Mater. Sci. Eng., A, 711, 28 (2018).
  11. J. S. Kim, Y. H. Lee, D. L. Lee, K. T. Park and C. S. Lee, Mater. Sci. Eng., A, 505, 105 (2009). https://doi.org/10.1016/j.msea.2008.11.040
  12. T. Michler and M. P. Balogh, Int. J. Hydrogen Energy, 35, 9746 (2010).
  13. A. I. Hwang, D. G. Lee, Y. Jung, J. M. Koo, J. D. Cho, J. S. Lee and D. W. Suh, Met. Mater. Int., 27, 3959 (2021).
  14. M. Asadipoor, J. Kadkhodapour, A. P. Anaraki, S. M. H. Sharifi, A. Ch. Darabi and A. Barnoush, Met. Mater. Int., 27, 2276 (2021).
  15. D. S. Bae, U. B. Baek, S. H. Nahm and I. Jo, Met. Mater. Int., 28, 466 (2022).
  16. J. Yoo, M. C. Jo, J. Bian, S. S. Sohn and S. Lee, Mater. Charact., 176, 111133 (2021).
  17. Y. Luo, H. Lu, N. Min, W. Li and X. Jin, Mater. Sci. Eng., A, 844, 143108 (2022).
  18. D. Ning, C. R. Dai, J. L. Wu, Y. D. Wang, W. Q. Wang, Y. Jing and J. Sun, Mater. Charact., 176, 111111 (2021).
  19. Y. Liu, M. Wang and G. Liu, Mater. Sci. Eng., A, 594, 40 (2014).
  20. I. Yoo, J. M. Lee, H. S. Lim, J. Y. Suh, J. Lee and B. Hwang, Metall. Mater. Trans. A, 51, 2118 (2020).
  21. J. Lee, T. Lee, D. J. Mun, C. M. Bae and C. S. Lee, Sci. Rep., 9, 5219 (2019).
  22. H. E. Kissinger, Anal. Chem., 29, 1702 (1957).
  23. G. Miyamoto, K. Yokoyama and T. Furuhara, Acta Mater., 177, 187 (2019).
  24. K. Kawakami and T. Matsumiya, ISIJ Int., 53, 709 (2013).
  25. A. Nagao, M. Dadfarnia, B. P. Somerday, P. Sofronis and R. O. Ritchie, J. Mech. Phys. Solids, 112, 403 (2018).
  26. M. B. Djukic, G. M. Bakic, V. S. Zeravcic, A. Sedmak and B. Rajicic, Eng. Fract. Mech., 216, 106528 (2019).