류마티스 관절염에서 NLRP3 인플라마좀의 역할

Role of NLRP3 Inflammasome in Rheumatoid Arthritis

  • 김현진 (우석대학교) ;
  • 정수현 (우석대학교) ;
  • 이준호 (우석대학교) ;
  • 김대용 (우석대학교) ;
  • 양갑식 (우석대학교)
  • Hyeon Jin Kim (College of Korea Medicine, Woosuk University) ;
  • Soo Hyun Jeong (College of Korea Medicine, Woosuk University) ;
  • JunHo Lee (College of Korea Medicine, Woosuk University) ;
  • Dae Yong Kim (College of Korea Medicine, Woosuk University) ;
  • Gabsik Yang (College of Korea Medicine, Woosuk University)
  • 투고 : 2022.09.02
  • 심사 : 2022.12.26
  • 발행 : 2022.12.31

초록

Objectives: Inflammasomes are molecular platforms that are generated inside cytoplasmic compartments. The objective is to mediate immunological responses of the host to cell damage and infection. Caspase-1 is triggered by inflammasome to generate interleukin-1𝛽 (IL-1𝛽), an inflammatory cytokine, and pyroptosis, an inflammatory form of apoptosis. Methods: In the past two decades, scientists have uncovered several inflammasomes. The most research has been conducted on NLRP3 inflamamsomes, whose activity can be stimulated by a variety of induction factors. However, the unregulated activation of NLRP3 inflammasomes is also a role in the etiology of several human disorders. Previous research has demonstrated that NLRP3 inflammasomes have a significant role in the innate and acquired immune systems, as well as in the prevalence of joint illnesses such rheumatoid arthritis. Conclusion: Within the scope of this review, we will present a brief overview of the biological features of NLRP3 inflamamsomes as well as a description of the underlying mechanisms governing activation and regulation. In particular, we explore the function of inflammasomes in the development of rheumatoid arthritis as well as the promise of recently identified medicines that target inflamasomes.

키워드

과제정보

This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HF20C0145) and by grants from the National Research Foundation of Korea (NRF-2017R1A6A3A11032822, and NRF-2020R1I1A3072176) funded by the Korean government (Ministry of Science, ICT and Future Planning).

참고문헌

  1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-19. https://doi.org/10.1056/NEJMra1004965
  2. George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology. 2020;28(6):1457-76. https://doi.org/10.1007/s10787-020-00757-9
  3. Cheng L, Liang X, Qian L, Luo C, Li D. NLRP3 gene polymorphisms and expression in rheumatoid arthritis. Exp Ther Med. 2021;22(4):1110.
  4. Crowson CS, Matteson EL, Myasoedova E, Michet CJ, Ernste FC, Warrington KJ, et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 2011;63(3):633-9.
  5. Safiri S, Kolahi AA, Hoy D, Smith E, Bettampadi D, Mansournia MA, et al. Global, regional and national burden of rheumatoid arthritis 1990-2017: a systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 2019;78(11):1463-71. https://doi.org/10.1136/annrheumdis-2019-215920
  6. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 2014;512(7512):69-73. https://doi.org/10.1038/nature13322
  7. 정순현, 조종관, 김소연, 김영일. 계작지모가우슬탕(桂芍知母加牛膝湯) 약침이 류마티스 관절염 생쥐에 미치는 영향. 한의학연구소 논문집. 2016;24(2):35-57.
  8. 오승준, 하현주, 구지향, 박양춘, 오민석, 정인철, et al. 한약의 류마티스 관절염 동물 모델에 대한 치료효과: 국내 및 국외 논문에 대한 체계적 문헌 고찰. 한방재활의학과학회지. 2020;30(3):103-16. https://doi.org/10.18325/jkmr.2020.30.3.103
  9. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-61. https://doi.org/10.1038/nature01661
  10. Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, et al. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol. 2021;12:688066.
  11. Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front Immunol. 2021;12:626193.
  12. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452(7183):103-7. https://doi.org/10.1038/nature06664
  13. Fransen J, Creemers MC, Van Riel PL. Remission in rheumatoid arthritis: agreement of the disease activity score (DAS28) with the ARA preliminary remission criteria. Rheumatology (Oxford). 2004;43(10):1252-5. https://doi.org/10.1093/rheumatology/keh297
  14. Sui J, Li H, Fang Y, Liu Y, Li M, Zhong B, et al. NLRP1 gene polymorphism influences gene transcription and is a risk factor for rheumatoid arthritis in han chinese. Arthritis Rheum. 2012;64(3):647-54. https://doi.org/10.1002/art.33370
  15. Pontillo A, Brandao L, Guimaraes R, Segat L, Araujo J, Crovella S. Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity. 2010;43(8):583-9. https://doi.org/10.3109/08916930903540432
  16. Bank S, Julsgaard M, Abed OK, Burisch J, Broder Brodersen J, Pedersen NK, et al. Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2019;49(7):890-903. https://doi.org/10.1111/apt.15187
  17. Zhang QB, Qing YF, He YL, Xie WG, Zhou JG. Association of NLRP3 polymorphisms with susceptibility to primary gouty arthritis in a Chinese Han population. Clin Rheumatol. 2018;37(1):235-44. https://doi.org/10.1007/s10067-017-3900-6
  18. Gil ME, Coetzer TL. Real-time quantitative PCR of telomere length. Mol Biotechnol. 2004;27(2):169-72. https://doi.org/10.1385/MB:27:2:169
  19. Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 2022;18(7):415-29.
  20. Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings. Nat Rev Rheumatol. 2015;11(10):606-15. https://doi.org/10.1038/nrrheum.2015.95
  21. Araki Y, Mimura T. Matrix Metalloproteinase Gene Activation Resulting from Disordred Epigenetic Mechanisms in Rheumatoid Arthritis. Int J Mol Sci. 2017;18(5).
  22. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013-22. https://doi.org/10.1016/j.cell.2014.04.007
  23. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology. 2016;16(7):407-20.
  24. Yang J, Zhao Y, Shao F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol. 2015;32:78-83.
  25. Lee MS. Role of innate immunity in diabetes and metabolism: recent progress in the study of inflammasomes. Immune Netw. 2011;11(2):95-9. https://doi.org/10.4110/in.2011.11.2.95
  26. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7(4):292-304. https://doi.org/10.1038/nri2062
  27. Shim JH, Stavre Z, Gravallese EM. Bone Loss in Rheumatoid Arthritis: Basic Mechanisms and Clinical Implications. Calcif Tissue Int. 2018;102(5):533-46. https://doi.org/10.1007/s00223-017-0373-1
  28. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev. 2017;97(4):1295-349. https://doi.org/10.1152/physrev.00036.2016
  29. Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol. 2019;41(5):607-18. https://doi.org/10.1007/s00281-019-00753-4
  30. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787-91. https://doi.org/10.4049/jimmunol.0901363
  31. Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, Balsa A, Blanco FJ, Canete JD, et al. Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res Ther. 2009;11(2):R42.
  32. Haneklaus M, O'Neill LA, Coll RC. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol. 2013;25(1):40-5. https://doi.org/10.1016/j.coi.2012.12.004
  33. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 2012;189(8):4175-81. https://doi.org/10.4049/jimmunol.1201516
  34. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol. 2016;34(4 Suppl 98):12-6.
  35. Kastbom A, Verma D, Eriksson P, Skogh T, Wingren G, Soderkvist P. Genetic variation in proteins of the cryopyrin inflammasome influences susceptibility and severity of rheumatoid arthritis (the Swedish TIRA project). Rheumatology (Oxford). 2008;47(4):415-7. https://doi.org/10.1093/rheumatology/kem372
  36. Tourkochristou E, Aggeletopoulou I, Konstantakis C, Triantos C. Role of NLRP3 inflammasome in inflammatory bowel diseases. World J Gastroenterol. 2019;25(33):4796-804. https://doi.org/10.3748/wjg.v25.i33.4796
  37. Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203-17. https://doi.org/10.1002/eji.201141550
  38. van de Veerdonk FL, Netea MG. New Insights in the Immunobiology of IL-1 Family Members. Front Immunol. 2013;4:167.
  39. Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27(4):549-59. https://doi.org/10.1016/j.immuni.2007.10.002
  40. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76(1):25-37. https://doi.org/10.1016/j.cyto.2015.06.017
  41. He Y, Hara H, Nunez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci. 2016;41(12):1012-21. https://doi.org/10.1016/j.tibs.2016.09.002
  42. Addobbati C, da Cruz HLA, Adelino JE, Melo Tavares Ramos AL, Fragoso TS, Domingues A, et al. Polymorphisms and expression of inflammasome genes are associated with the development and severity of rheumatoid arthritis in Brazilian patients. Inflamm Res. 2018;67(3):255-64. https://doi.org/10.1007/s00011-017-1119-2
  43. Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC, Eyre S, et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis. 2014;73(6):1202-10.
  44. Choulaki C, Papadaki G, Repa A, Kampouraki E, Kambas K, Ritis K, et al. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):257.
  45. Kim HW, Kwon YJ, Park BW, Song JJ, Park YB, Park MC. Differential expressions of NOD-like receptors and their associations with inflammatory responses in rheumatoid arthritis. Clin Exp Rheumatol. 2017;35(4):630-7.
  46. Ruscitti P, Cipriani P, Di Benedetto P, Liakouli V, Berardicurti O, Carubbi F, et al. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1β via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin Exp Immunol. 2015;182(1):35-44. https://doi.org/10.1111/cei.12667