DOI QR코드

DOI QR Code

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee (Sensor System Research Center, Korea Institute of Science and Technology) ;
  • Minah, Seo (Sensor System Research Center, Korea Institute of Science and Technology)
  • Received : 2022.11.02
  • Accepted : 2022.11.30
  • Published : 2022.11.30

Abstract

In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A2C2007077 and the Global Frontier Program CAMM-2019M3A6B3030638), KIST Institutional Program (No. 2E31271), and KU-KIST school project.

References

  1. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, "Hydrogen sensors - A review", Sens. Actuators, B Chem., Vol. 157, No. 2, pp. 329-352, 2011. https://doi.org/10.1016/j.snb.2011.04.070
  2. F. A. A. Nugroho, I. Darmadi, and L. Cusinato, "Metal-polymer hydride nanomaterials for plasmonic ultrafast hydrogen detection", Nat. Mater. Vol. 18, No. 5, pp. 489-495, 2019. https://doi.org/10.1038/s41563-019-0325-4
  3. K. Kim and G. Ching, "Fast response hydrogen sensors based on palladium and platinum/porous 3C-SiC Schottky diodes", Sens. Actuators, B Chem., Vol. 160, No. 1, pp. 1232-1236, 2011. https://doi.org/10.1016/j.snb.2011.09.054
  4. J. S. Lee, S. G. Kim, S. Cho, and J. Jang, "Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors", Nanoscale, Vol. 7, No. 48, pp. 20665-20673, 2015. https://doi.org/10.1039/C5NR06193H
  5. R. Griessen and A. Driessen, "Heat of formation and band structure of binary and ternary metal hydrides", Phys. Rev. B., Vol. 30, No. 8, pp. 4372-4381, 1984. https://doi.org/10.1103/PhysRevB.30.4372
  6. P. Ferrin, S. Kandoi, A. U. Nilekar, and M. Mavrikakis, "Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study", Surf. Sci., Vol. 606, No. 7-8, pp. 679-689, 2012. https://doi.org/10.1016/j.susc.2011.12.017
  7. S. Dekura, H. Kobayashi, R. Ikeda, M. Maesato, H. Yoshino, M. Ohba, T. Ishimoto, S. Kawaguchi, Y. Kubota, S. Yoshioka, S. Matsumura, T. Sugiyama, and H. Kitagawa, "The Electronic State of Hydrogen in the α Phase of the Hydrogen-Storage Material PdH(D)x: Does a Chemical Bond Between Palladium and Hydrogen Exist?", Angew. Chemie - Int. Ed., Vol. 57, No. 31, pp. 9823-9827, 2018. https://doi.org/10.1002/anie.201805753
  8. H. S. Lee, J. Kim, H. Moon, and W. Lee, "Hydrogen Gas Sensors Using Palladium Nanogaps on an Elastomeric Substrate", Adv. Mater., Vol. 33, No. 47, pp. 1-26, 2021.
  9. B. J. Kestel, J. A. Eastman, and L. J. Thompson, "Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium", Phys. Rev. B., Vol. 48, No. 1, pp. 84-92, 1993. https://doi.org/10.1103/physrevb.48.84
  10. N. J. J. Johnson, B. Lam, B. P. MacLeod, R. S. Sherbo, M. Moreno-Gonzalez, D. K. Fork, and C. P. Berlinguette, "Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals", Nat. Mater., Vol. 18, No. 5, pp. 454-458, 2019. https://doi.org/10.1038/s41563-019-0308-5
  11. M. R. Staker, "A model and simulation of lattice vibrations in a superabundant vacancy phase of palladium-deuterium", Model. Simul. Mater. Sci. Eng., Vol. 28, No. 6, pp. 065006(1)-065006(15), 2020. https://doi.org/10.1088/1361-651X/ab9994
  12. X. W. Zhou, T. W. Heo, B. C. Wood, V. Stavila, S. Kang, and M. D. Allendorf, "Molecular dynamics studies of fundamental bulk properties of palladium hydrides for hydrogen storage", J. Appl. Phys., Vol. 123, No. 22, p. 225105, 2018.
  13. R. Griessen, N. Strohfeldt, and H. Giessen, "Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles", Nat. Mater., Vol. 15, No. 3, pp. 311-317, 2016. https://doi.org/10.1038/nmat4480
  14. S. Wagner and A. Pundt, "Quasi-thermodynamic model on hydride formation in palladium-hydrogen thin films: Impact of elastic and microstructural constraints", Int. J. Hydrogen Energy, Vol. 41, No. 4, pp. 2727-2738, 2016. https://doi.org/10.1016/j.ijhydene.2015.11.063
  15. D. G. Narehood, S. Kishore, H. Goto, J. H. Adair, J. A. Nelson, H. R. Gutierreza, and P. C. Eklund., "X-ray diffraction and H-storage in ultra-small palladium particles", Int. J. Hydrogen Energy, Vol. 34, No. 2, pp. 952-960, 2009. https://doi.org/10.1016/j.ijhydene.2008.10.080
  16. W. Liu, Y. Magnin, D. Forster, J. Bourgon, T. Len, F. Morfin, L. Piccolo, H. Amara, and C. Zlotea, "Size-dependent hydrogen trapping in palladium nanoparticles", J. Mater. Chem. A, Vol. 9, No. 16, pp. 10354-10363, 2021. https://doi.org/10.1039/D0TA12174F
  17. F. Delogu, "Smooth size effects in Pd and PdHx nanoparticles", J. Phys. Chem. C, Vol. 114, No. 42, pp. 18085-18090, 2010. https://doi.org/10.1021/jp106182n
  18. A. Houari, S. F. Matar, and V. Eyert, "Electronic structure and crystal phase stability of palladium hydrides", J. Appl. Phys., Vol. 116, No. 17, p. 173706, 2014.
  19. O. Dankert and A. Pundt, "Hydrogen-induced percolation in discontinuous films", Appl. Phys. Lett., Vol. 81, No. 9, pp. 1618-1620, 2002. https://doi.org/10.1063/1.1501761
  20. G. Kaltenpoth, P. Schnabel, E. Menke, E. C. Walter, M. Grunze, and R. M. Penner, "Multimode detection of hydrogen gas using palladium-covered silicon µ-channels", Anal. Chem., Vol. 75, No. 18, pp. 4756-4765, 2003. https://doi.org/10.1021/ac034507e
  21. M. Ramanathan, G. Skudlarek, H. H. Wang, and S. B. Darling, "Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films", Nanotechnol., Vol. 21, No. 12, p. 125501, 2010.
  22. T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, "Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films", Appl. Phys. Lett., Vol. 86, No. 20, pp. 203104(1)-203104(3), 2005.
  23. M. Jo, K. Kim, K. Choi, J. Lee, J. Yoo, S. Kim, H. Jin, M. Seo, and J. Yoon, "Wireless and Linear Hydrogen Detection up to 4% with High Sensitivity through Phase-Transition-Inhibited Pd Nanowires", ACS Nano., Vol. 16, No. 8, pp. 11957-11967, 2022. https://doi.org/10.1021/acsnano.2c01783
  24. K. R. Kim, J. S. Noh, J. M. Lee, Y. J. Kim, and W. Lee, "Suppression of phase transitions in Pd thin films by insertion of a Ti buffer layer", J. Mater. Sci., Vol. 46, No. 6, pp. 1597-1601, 2011. https://doi.org/10.1007/s10853-010-4970-x
  25. J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, and T. Lee, "A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid", ACS Appl. Mater. Interfaces, Vol. 7, No. 6, pp. 3554-3561, 2015. https://doi.org/10.1021/am5073645
  26. X. Tang, P. A. Haddad, N. Mager, X. Geng, N. Reckinger, S. Hermans, M. Debliquy, and J. P. Raskin, "Chemically deposited palladium nanoparticles on graphene for hydrogen sensor applications", Sci. Rep., Vol. 9, No. 1, pp. 1-11, 2019. https://doi.org/10.1038/s41598-018-37186-2
  27. R. Kumar, S. Malik, and B. R. Mehta, "Sensors and Actuators B : Chemical Interface induced hydrogen sensing in Pd nanoparticle / graphene composite layers", Sens. Actuators B. Chem., Vol. 209, pp. 919-926, 2015. https://doi.org/10.1016/j.snb.2014.12.037
  28. M. Seo, K. Kang, J. Yoo, J. Park, J. Lee, I. Cho, B. Kim, Y. Jeong, J. Lee, B. Kim, J. Rho, J. Yoon, and I. Park, "Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor", ACS Nano., Vol. 14, No. 12, pp. 16813-16822, 2020.
  29. J. I. Avila, R. J. Matelon, R. Trabol, M. Favre, D. Lederman, U. G. Volkmann, and A. L. Cabrera, "Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy", J. Appl. Phys., Vol. 107, No. 2, p. 023504, 2010.
  30. S. H. Cho, J. M. Suh, B. Jeong, T. H. Lee, K. S. Choi, T. H. Eom, T. Kim, and H. W. Jang, "Fas responding and higly reversible gasochromic H2 sensor using Pd-decorated amorphous WO3 thin film", Chem. Eng. J., Vol. 446, No. 1, p. 136862, 2022.
  31. A. Chtanov and M. Gal, "Differential optical detection of hydrogen gas in the atmosphere", Sens. Actuators, B Chem., Vol. 79, No. 2-3, pp. 196-199, 2001. https://doi.org/10.1016/S0925-4005(01)00875-9
  32. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, "Optical hydrogen detection with periodic subwavelength palladium hole arrays", Appl. Phys. Lett., Vol. 95, No. 13, pp. 1-4, 2009.
  33. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus", Nat. Mater., Vol. 10, No. 8, pp. 631- 636, 2011. https://doi.org/10.1038/nmat3029
  34. F. Sterl, N. Strohfeldt, S. Both, E. Herkert, T. Weiss, and H. Giessen, "Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors", ACS Sens., Vol. 5, No. 4, pp. 917-927, 2020. https://doi.org/10.1021/acssensors.9b02436
  35. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, "Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing", Nano Lett., Vol. 11, No. 10, pp. 4366-4369, 2011. https://doi.org/10.1021/nl202489g
  36. F. A. A. Nugroho, P. Bai, I. Darmadi, and G. W. Castellanos, "Inverse Designed Plasmonic Metasurface with ppb Optical Hydrogen Detection", Anal. Chem., pp. 1-25, 2022.