DOI QR코드

DOI QR Code

Premixed MTA제재의 pH, 이온 유리 정도, 용해도

pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates

  • 백설아 (단국대학교 치과대학 소아치과학교실) ;
  • 장유지 (단국대학교 치과대학 소아치과학교실) ;
  • 이정환 (단국대학교 치과대학 생체재료학교실) ;
  • 이준행 (단국대학교 치과대학 소아치과학교실) ;
  • 신지선 (단국대학교 치과대학 소아치과학교실) ;
  • 김종빈 (단국대학교 치과대학 소아치과학교실) ;
  • 한미란 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실)
  • Seolah, Back (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • YuJi, Jang (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Junghwan, Lee (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Joonhaeng, Lee (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jisun, Shin (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jongbin, Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Miran, Han (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • JongSoo, Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University)
  • 투고 : 2022.06.10
  • 심사 : 2022.09.01
  • 발행 : 2022.11.30

초록

이 연구는 premixed MTA 제재와 기존 치수복조제의 경화 전, 후의 pH 값 그리고 칼슘, 황, 스트론튬 이온의 유리량, 용해도를 비교했다. 사용된 재료는 다음과 같다 : 레진 강화형 칼슘실리케이트(TheraCal LC®; TLC), 레진 강화형 수산화칼슘(UBP, Ultra-BlendTM plus), 2종류의 premixed MTA(Endocem MTA® premixed regular [EMPR] and Well-RootTM PT [WRP]). 각 재료의 시편은 경화 전, 경화 후 2군으로 나누어 준비한 뒤 증류수에 보관하였다. pH, 용해도를 측정하였으며 ICP-AES를 이용한 칼슘, 황, 스트론튬의 3가지 이온 유리량을 측정하였다. 경화 후 군에서 TLC와 UBP의 pH 값은 감소했다. 그러나 premixed MTA 재료의 pH 값은 증가했다. TLC는 다른 재료와 비교하여 스트론튬 이온 유리량이 더 많았다. 동시에 EMPR에서 황이온 유리량이 높았다(p < 0.05). 경화 후 군에서 칼슘 이온 방출은 두 종류의 premixed MTA에서 더 높았다(p < 0.05). 경화 후 군에서 용해도는 Kruskal-Wallis 서 test를 이용하여 통계분석하였고 Mann-Whitney U test를 이용하여 사후검정하였다. 결론적으로 레진 강화형 칼슘 실리케이트 시멘트, 레진 강화형 수산화칼슘 시멘트, 2종류의 premixed MTAs 모두 경화 후 알칼리성 pH 값과 낮은 용해도를 가지고 있었으며 다양한 이온을 유리했다.

The current study aimed to compare the pH, solubility value, and ion release capability of premixed mineral trioxide aggregates (MTAs) versus conventional pulp capping materials before and after setting. The following materials were used: resin-modified calcium silicate cement (TheraCal LC®, TLC), resin-modified calcium hydroxide cement (Ultra-BlendTM plus, UBP), and 2 kinds of premixed MTA (Endocem MTA® premixed regular [EMPR] and Well-RootTM PT [WRP]). The specimens of each material were prepared before and after setting and were immersed in distilled water. The materials' pH and solubility value were assessed. Next, three kinds of ion (calcium, sulfide, and strontium) released by pulp capping materials were evaluated via inductively coupled plasma atomic emission spectrometry. In the after-setting group, the pH of TLC and UBP decreased. However, the pH of the premixed MTAs increased with time. TLC released a higher concentration of strontium ion compared with the other materials. Meanwhile, EMPR released a significantly high concentration of sulfide ion (p < 0.05). In the after-setting group, the 2 kinds of premixed MTAs released a significantly higher concentration of calcium ion compared with the other materials (p < 0.05). In the after-setting group, EMPR had a significantly low solubility value (p < 0.05). The Kruskal-Wallis test, followed by the Mann-Whitney U test with Bonferroni correction, was used in statistical analysis. In conclusion, resin-modified calcium silicate cement, modified calcium hydroxide cement, and the 2 kinds of premixed MTAs had an alkaline pH and low solubility value and they released various concentrations of ions after setting.

키워드

과제정보

This study was supported through the Research-Focused Department Promotion Project as a part of the University Innovation Support Program for Dankook University in 2021.

참고문헌

  1. Stanley HR : Pulp capping: conserving the dental pulp - can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol, 68:628-639, 1989. https://doi.org/10.1016/0030-4220(89)90252-1
  2. Dammaschke T, Galler K, Krastl G : Current recommendations for vital pulp treatment. Dtsch Zahnarztl Z Int, 1:43-52, 2019.
  3. Dammaschke T : The history of direct pulp capping. J Hist Dent, 56:9-23, 2008.
  4. Horsted-Bindslev P, Lovschall H : Treatment outcome of vital pulp treatment. Endod Topics, 2:24-34, 2002. https://doi.org/10.1034/j.1601-1546.2002.20103.x
  5. Desai S, Chandler N : Calcium hydroxide-based root canal sealers: a review. J Endod, 35:475-480, 2009. https://doi.org/10.1016/j.joen.2008.11.026
  6. Mohammadi Z, Dummer PMH : Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J, 44:697-730, 2011. https://doi.org/10.1111/j.1365-2591.2011.01886.x
  7. Komabayashi T, Zhu Q, Eberhart R, Imai Y : Current status of direct pulp-capping materials for permanent teeth. Dent Mater J, 35:1-12, 2016. https://doi.org/10.4012/dmj.2015-013
  8. Parirokh M, Torabinejad M : Mineral trioxide aggregate: a comprehensive literature review - part III: clinical applications, drawbacks, and mechanism of action. J Endod, 36:400-413, 2010. https://doi.org/10.1016/j.joen.2009.09.009
  9. Vivan RR, Zapata RO, Zeferino MA, Bramante CM, Bernardineli N, Garcia RB, Duarte MAH, Filho MT, de Moraes IG : Evaluation of the physical and chemical properties of two commercial and three experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 110:250-256, 2010. https://doi.org/10.1016/j.tripleo.2010.04.021
  10. Torabinejad M, Ford TRP, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP : Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod, 23:225-228, 1997. https://doi.org/10.1016/S0099-2399(97)80051-9
  11. Torabinejad M, Parirokh M : Mineral trioxide aggregate: a comprehensive literature review - part II: leakage and biocompatibility investigations. J Endod, 36:190-202, 2010. https://doi.org/10.1016/j.joen.2009.09.010
  12. Xu HHK, Carey LE, Simon Jr. CG, Takagi S, Chow LC : Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent Mater, 23:433-441, 2007. https://doi.org/10.1016/j.dental.2006.02.014
  13. Carey LE, Xu HHK, Simon Jr. CG, Takagi S, Chow LC : Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials, 26:5002-5014, 2005. https://doi.org/10.1016/j.biomaterials.2005.01.015
  14. Wu M, Wang T, Zhang Y : Premixed tricalcium silicate/sodium phosphate dibasic cements for root canal filling. Mater Chem Phys, 257:123682, 2021.
  15. Takagi S, Chow LC, Hirayama S, Sugawara A : Premixed calcium-phosphate cement pastes. J Biomed Mater Res B Appl Biomater, 67:689-696, 2003.
  16. Han L, Kodama S, Okiji T : Evaluation of calcium-releasing and apatite-forming abilities of fast-setting calcium silicate-modified endodontic materials. Int Endod J, 48:124-130, 2015.
  17. Ber BS, Hatton JF, Stewart GP : Chemical modification of ProRoot MTA to improve handling characteristics and decrease setting time. J Endod, 33:1231-1234, 2007. https://doi.org/10.1016/j.joen.2007.06.012
  18. Abu-Nawareg M, Zidan A : Modification of Portland Cement Properties using Glycerin. Int J Health Sci Res, 10:168-178, 2020.
  19. Nazari A, Riahi S : The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete. Mater Res, 13:551-556, 2010. https://doi.org/10.1590/S1516-14392010000400019
  20. Giachetti L, Russo DS, Bertini F, Giuliani V : Translucent fiber post cementation using a light-curing adhesive/composite system: SEM analysis and pull-out test. J Dent, 32:629-634, 2004. https://doi.org/10.1016/j.jdent.2004.06.004
  21. Prasad M, Mohamed S, Nayak K, Shetty SK, Talapaneni AK : Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system. J Nat Sci Biol Med, 5:123-129, 2014. https://doi.org/10.4103/0976-9668.127305
  22. Moharamzadeh K, Van Noort R, Brook IM, Scutt AM : Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent Mater, 23: 40-44, 2007. https://doi.org/10.1016/j.dental.2005.11.039
  23. Goon AT, Isaksson M, Zimerson E, Goh CL, Bruze M : Contact allergy to (meth) acrylates in the dental series in southern Sweden: simultaneous positive patch test reaction patterns and possible screening allergens. Contact Dermatitis, 55:219-226, 2006. https://doi.org/10.1111/j.1600-0536.2006.00922.x
  24. Lee MJ, Kim MJ, Kwon JS, Lee SB, Kim KM : Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials (Basel), 10:288, 2017.
  25. Shortall AC, Harrington E, Wilson HJ : Light curing unit effectiveness assessed by dental radiometers. J Dent, 23:227-232, 1995. https://doi.org/10.1016/0300-5712(95)91187-R
  26. Hamdy M, Fayyad DM, Eldaharawy MH, Hegazy E : Physical properties of different Pulp Capping Materials and Histological Analysis of their effect on Dogs' Dental Pulp Tissue Healing. Egypt Dent J , 64:2657-2667, 2018. https://doi.org/10.21608/edj.2018.77260
  27. Hirose Y, Yamaguchi M, Kawabata S, Murakami M, Nakashima M, Gotoh M, Yamamoto T : Effects of extracellular pH on dental pulp cells in vitro. J Endod, 42:735-741, 2016. https://doi.org/10.1016/j.joen.2016.01.019
  28. Lucas CA, Gillies RJ, Olson JE, Giuliano KA, Martinez R, Sneider JM : Intracellular acidification inhibits the proliferative response in BALB/c-3T3 cells. J Cell Physiol, 136:161-167, 1988.
  29. Mizuno M, Banzai Y : Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int Endod J, 41:933-938, 2008. https://doi.org/10.1111/j.1365-2591.2008.01420.x
  30. Rashid F, Shiba H, Mizuno N, Mouri Y, Fujita T, Shinohara H, Ogawa T, Kawaguchi H, Kurihara H : The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. J Endod, 29:104-107, 2003. https://doi.org/10.1097/00004770-200302000-00004
  31. Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S : Solubility and pH of direct pulp capping materials: a comparative study. J Appl Biomater Func Mater, 13:E181-E185, 2015.
  32. El-Fiqi A, Lee JH, Lee EJ, Kim HW : Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Miomater, 9:9508-9521, 2013. https://doi.org/10.1016/j.actbio.2013.07.036
  33. International Organization for Standardization : ISO 6876:2012 Dentistry - Root canal sealing materials. Available from URL: https://www.iso.org/standard/45117.html (Accessed on July 21, 2020).
  34. Bae WJ, Min KS, Kim JJ, Kim JJ, Kim HW, Kim EC : Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. Dent Mater, 28:1271-1279, 2012.
  35. Jun SK, Lee JH, Lee HH : The biomineralization of a bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells. Biomed Res Int, 2017:2495282, 2017.
  36. Narita H, Itoh S, Imazato S, Yoshitake F, Ebisu S : An explanation of the mineralization mechanism in osteoblasts induced by calcium hydroxide. Acta Biomater, 6:586-590, 2010. https://doi.org/10.1016/j.actbio.2009.08.005
  37. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ : Inflammation-regeneration interplay in the dentine-pulp complex. J Dent, 38:687-697, 2010. https://doi.org/10.1016/j.jdent.2010.05.016
  38. Gandolfi MG, Siboni F, Polimeni A, Bossu M, Riccitiello F, Rengo S, Prati C : In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dent J , 1:41-60, 2013. https://doi.org/10.3390/dj1040041
  39. Santos AD, Moraes JCS, Araujo EB, Yukimitu K, Filho WVV : Physico-chemical properties of MTA and a novel experimental cement. Int Endod J, 38:443-447, 2005. https://doi.org/10.1111/j.1365-2591.2005.00963.x
  40. Kang TY, Choi JW, Kim KM, Kwon JS : Mechanical and physico-chemical properties of premixed-MTA in contact with three different types of solutions. Korean J Dent Mater, 48:281-292, 2021. https://doi.org/10.14815/kjdm.2021.48.4.281
  41. Gandolfi MG, Siboni F, Prati C : Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J, 45:571-579, 2012. https://doi.org/10.1111/j.1365-2591.2012.02013.x
  42. Khalil I, Naaman A, Camilleri J : Investigation of a novel mechanically mixed mineral trioxide aggregate (MM-MTA™). Int Endod J, 48:757-767, 2015. https://doi.org/10.1111/iej.12373
  43. Margunato S, Tasli PN, Aydin S, Kazandag MK, Sahin F : In vitro evaluation of ProRoot MTA, Biodentine, and MM-MTA on human alveolar bone marrow stem cells in terms of biocompatibility and mineralization. J Endod, 41:1646-1652, 2015. https://doi.org/10.1016/j.joen.2015.05.012
  44. Damas BA, Wheater MA, Bringas JS, Hoen MM : Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J Endod, 37:372-375, 2011. https://doi.org/10.1016/j.joen.2010.11.027
  45. Lovato KF, Sedgley CM : Antibacterial activity of endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J Endod, 37:1542-1546, 2011. https://doi.org/10.1016/j.joen.2011.06.022
  46. Estrela C, Sydney GB, Bammann LL, Felippe Junior O : Mechanism of the action of calcium and hydroxy ions of calcium hydroxide on tissue and bacteria. Braz Dent J, 6:85-90, 1995.
  47. Luczaj-Cepowicz E, Marczuk-Kolada G, Pawinska M, Obidzinska M, Holownia A : Evaluation of cytotoxicity and pH changes generated by various dental pulp capping materials - an in vitro study. Folia Histochem Cytobiol, 55:86-93, 2017.
  48. Gandolfi MG, Taddei P, Modena E, Siboni F, Prati C : Biointeractivity-related versus chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J Biomed Mater Res B Appl Biomater, 101:1107-1123, 2013. https://doi.org/10.1002/jbm.b.32920
  49. Duarte MAH, de Oliveira Demarchi ACC, Yamashita JC, Kuga MC, de Campos Fraga S : pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 95:345-347, 2003. https://doi.org/10.1067/moe.2003.12
  50. Yamamoto S, Han L, Noiri Y, Okiji T : Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. Int Endod J, 50(Suppl 2):E73-E82, 2017. https://doi.org/10.1111/iej.12737
  51. Weld JT, Gunther A : The antibacterial properties of sulfur. J Exp Med, 85:531-542, 1947. https://doi.org/10.1084/jem.85.5.531
  52. Choudhury SR, Roy S, Goswami A, Basu S : Polyethylene glycol-stabilized sulphur nanoparticles: an effective antimicrobial agent against multidrug-resistant bacteria. J Antimicrob Chemother, 67:1134-1137, 2012. https://doi.org/10.1093/jac/dkr591
  53. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ : The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone, 18: 517-523, 1996. https://doi.org/10.1016/8756-3282(96)00080-4
  54. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A : Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone, 29:176-179, 2001. https://doi.org/10.1016/S8756-3282(01)00484-7
  55. Schroder U : Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res, 64:541-548, 1985. https://doi.org/10.1177/002203458506400407
  56. Choi Y, Park SJ, Lee SH, Hwang YC, Yu MK, Min KS : Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod, 39: 467-472, 2013. https://doi.org/10.1016/j.joen.2012.11.023
  57. Nekoofar MH, Adusei G, Sheykhrezae MS, Hayes SJ, Bryant ST, Dummer PMH : The effect of condensation pressure on selected physical properties of mineral trioxide aggregate. Int Endod J, 40:453-461, 2007. https://doi.org/10.1111/j.1365-2591.2007.01236.x