DOI QR코드

DOI QR Code

Recovery of Streptococcus Mutans Biofilm after Photodynamic Therapy with Erythrosine and LED Light Source

Erythrosine과 LED를 이용한 광역동 치료 후 Streptococcus mutans 바이오필름의 회복

  • Yongwook, Shin (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Howon, Park (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Juhyun, Lee (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Siyoung, Lee (Department of Microbiology and Immunology, College of Dentistry, Gangneung-Wonju National University)
  • 신용욱 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 박호원 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 이주현 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 치과대학 미생물학 및 면역학교실)
  • Received : 2021.11.16
  • Accepted : 2021.12.09
  • Published : 2022.05.31

Abstract

The aim of this study was to evaluate the effects of erythrosine-mediated photodynamic therapy (PDT) on Streptococcus mutans biofilm recovery by counting its colony-forming units (CFUs) and via confocal laser scanning microscopy analysis at different time points following PDT. In PDT, photosensitizer was an erythrosine. S. mutans ATCC25175 biofilms were irradiated using an LED curing light. Chlorhexidine (CHX) was used as positive control. After each antimicrobial treatment, samples were cultured to allow biofilm recovery. Viability was measured by calculating the CFU counts after treatment and after every 3 hours for up to 24 hours. Immediately after treatment, the PDT and CHX groups showed equally significant decreases in S. mutans CFU counts compared to the negative control. After 12 hours of reculture, the PDT group showed no significant difference in the decrease in CFU count compared to the negative control, whereas the CHX group showed significantly lower CFU counts throughout the 24-hour period. Erythrosine-mediated PDT can effectively inhibit S. mutans biofilm formation. However, biofilm recovery occurred earlier in the CHX group after PDT. This study provides insights into the clinical effectiveness of PDT in preventing dental caries.

이 연구의 목적은 erythrosine 매개 광역동 치료 (Photodynamic therapy, PDT)가 Streptococcus mutans 바이오필름 회복에 미치는 영향을 Colony Forming Unit (CFU) 측정과 공초점 레이저 주사 현미경의 관찰을 통해 평가하는 것이었다. PDT에서 광감각제로 erythrosine을 사용하였다. S. mutans ATCC 25175 바이오필름에 LED 광원을 통해 광역동 치료를 시행하였다. 클로르헥시딘 (Chlorhexidine, CHX) 처리한 군을 양성대조군으로 설정하였다. 각 군에 따른 처리 후 바이오필름의 회복을 위해 배양하였다. 세균 생존율을 처리 직후, 재배양 후 3시간 간격으로 24시간까지 CFU 계수를 통해 측정하였다. 항균 처리 직후 PDT, CHX에서 모두 음성대조군과 비교 시 S. mutans CFU 수가 유의하게 감소하였다. 재배양 12시간 후 PDT는 음성대조군과 비교 시 CFU 수 감소에 관하여 통계적인 유의성을 띄지 않았지만 CHX는 24시간 동안 통계적으로 낮은 CFU 수를 보였다. Erythrosine을 이용한 광역동 치료는 S. mutans 바이오필름 형성을 효과적으로 억제하지만 클로르헥시딘보다 바이오필름의 회복이 빠르게 나타났다. 이 연구는 치아 우식 예방을 위한 광역동 치료의 임상적 효과에 관한 통찰력을 제공한다.

Keywords

References

  1. Jiao Y, Tay FR, Niu LN, Chen JH : Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci, 11:1-11, 2019. 
  2. Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR : Singularities of pyogenic Streptococcal biofilms - from formation to health implication. Front Microbiol, 11:584947, 2020. 
  3. Berger D, Rakhamimova A, Pollack A, Loewy Z : Oral biofilms: Development, control, and analysis. High Throughput, 7:24, 2018. 
  4. de Carvalho FG, Silva DS, Spolidorio DMP, et al. : Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol, 51:1024-1027, 2006.  https://doi.org/10.1016/j.archoralbio.2006.06.001
  5. Banas JA : Virulence properties of Streptococcus mutans. Front Biosci, 9:1267-1277, 2004.  https://doi.org/10.2741/1305
  6. Rajesh S, Koshi E, Philip K, Mohan A : Antimicrobial photodynamic therapy: An overview. J Indian Soc Periodontol, 15:323-327, 2011.  https://doi.org/10.4103/0972-124X.92563
  7. Kim CK, Park JS, Chai JK, et al. : Effects of the C31G, Listerine and CPC as a adjunctives to the mechanical plaque control on the early periodontitis. J Periodontal Implant Sci, 28:631-646, 1998.  https://doi.org/10.5051/jkape.1998.28.4.631
  8. Takasaki AA, Aoki A, Izumi Y, et al. : Application of antimicrobial photodynamic therapy in periodontal and periimplant diseases. Periodontol 2000, 51:109-140, 2009.  https://doi.org/10.1111/j.1600-0757.2009.00302.x
  9. Wood S, Metcalf D, Devine D, Robinson C : Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother, 57:680-684, 2006.  https://doi.org/10.1093/jac/dkl021
  10. Costa ACBP, Rasteiro VMC, Jorge AOC, et al. : The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses, 55:56-63, 2012.  https://doi.org/10.1111/j.1439-0507.2011.02042.x
  11. Kim JY, Park HW, Lee SY, et al. : Antimicrobial effect on Streptococcus mutans in photodynamic therapy using different light source. J Korean Acad Pediatr Dent, 45:82-89, 2018.  https://doi.org/10.5933/JKAPD.2018.45.1.82
  12. Jung JS, Park HW, Lee SY, et al. : The effect of photodynamic therapy on the viability of Streptococcus mutans isolated from oral cavity. J Korean Acad Pediatr Dent, 39:233-241, 2012.  https://doi.org/10.5933/JKAPD.2012.39.3.233
  13. Park CA, Park HW, Lee SY, et al. : Application of teeth whitening LED for prevention of dental caries: Antimicrobial photodynamic therapy approach. J Korean Acad Pediatr Dent, 47:70-77, 2020.  https://doi.org/10.5933/JKAPD.2020.47.1.70
  14. Choi SJ, Park HW, Lee SY, et al. : Optimum treatment parameters for photodynamic antimicrobial chemotherapy on Streptococcus mutans biofilms. J Korean Acad Pediatr Dent, 42:151-157, 2015.  https://doi.org/10.5933/JKAPD.2015.42.2.151
  15. Kho JH, Park HW, Lee SY, et al. : Antimicrobial effect of photodynamic therapy using plaque disclosing agent. J Korean Acad Pediatr Dent, 47:120-127, 2020.  https://doi.org/10.5933/JKAPD.2020.47.2.120
  16. Cieplik F, Tabenski L, Buchalla W, Maisch T : Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front Microbiol, 5:405, 2014. 
  17. Imfeld T : Chlorhexidine-containing chewing gum. Schweiz Monatsschr Zahnmed, 116:476-483, 2006. 
  18. Bonesvoll P : Oral pharmacology of chlorhexidine. J Clin Periodontol, 4:49-65, 1977. 
  19. Varoni E, Tarce M, Lodi G, Carrassi A : Chlorhexidine (CHX) in dentistry: state of the art. Minerva Stomatol, 61:399-419, 2012. 
  20. Cieplik F, Jakubovics NS, Al-Ahmad A, et al. : Resistance toward chlorhexidine in oral bacteria - Is there cause for concern? Front Microbiol, 10:587, 2019. 
  21. Tavares A, Carvalho CMB, Almeida A, et al. : Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs, 8:91-105, 2010.  https://doi.org/10.3390/md8010091
  22. Goulart RDC, Bolean M, Ciancaglini P, et al. : Photodynamic therapy in planktonic and biofilm cultures of Aggregatibacter actinomycetemcomitans. Photomed Laser Surg, 28:53-60, 2010. 
  23. Konopka K, Goslinski T : Photodynamic therapy in dentistry. J Dent Res, 86:694-707, 2007.  https://doi.org/10.1177/154405910708600803
  24. Stajer A, Kajari S, Barath Z, et al. : Utility of photodynamic therapy in dentistry: Current concepts. Dent J, 8:43, 2020. 
  25. Trowbridge HO, Franks M, Korostoff E, Emling R : Sensory response to thermal stimulation in human teeth. J Endod, 6:405-412, 1980.  https://doi.org/10.1016/S0099-2399(80)80216-0
  26. Zach L : Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol, 19:515-530, 1965.  https://doi.org/10.1016/0030-4220(65)90015-0
  27. De Freitas MTM, Soares TT, Zanin ICJ, et al . : Effect of photodynamic antimicrobial chemotherapy on mono-and multi-species cariogenic biofilms: a literature review. Photomed Laser Surg, 35:239-245, 2017.  https://doi.org/10.1089/pho.2016.4108
  28. Prazmo EJ, Kwasny M, Lapinski M, Mielczarek A : Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv Clin Exp Med, 25:799-807, 2016. https://doi.org/10.17219/acem/32488