DOI QR코드

DOI QR Code

Naringin enhances the migration and osteogenic differentiation of human dental pulp stem cells

  • Yeon, Kim (Department of Oral Physiology, Pusan National University) ;
  • Hyun-Joo, Park (Department of Oral Physiology, Pusan National University) ;
  • Mi-Kyoung, Kim (Department of Oral Physiology, Pusan National University) ;
  • Yong-Il, Kim (Department of Orthodontics, Pusan National University) ;
  • Soo-Kyung, Bae (Dental and Life Science Institute, Pusan National University) ;
  • Hyung Joon, Kim (Department of Oral Physiology, Pusan National University) ;
  • Moon-Kyoung, Bae (Department of Oral Physiology, Pusan National University)
  • Received : 2022.11.11
  • Accepted : 2022.11.28
  • Published : 2022.12.22

Abstract

Bioactive flavonoids have been shown to improve the biological activity of stem cells derived from different sources in tissue regeneration. The goal of this study was to see how naringin, a natural flavonoid discovered in citrus fruits, affected the biological properties of human dental pulp stem cells (HDPSCs). In this study, we found that naringin increases the migratory ability of HDPSCs. Naringin increased matrix metalloproteinase-2 (MMP-2) and C-X-C chemokine receptor type 4 (CXCR4) mRNA and protein expression in HDPSCs. ARP100, a selective MMP-2 inhibitor, and AMD3100, a CXCR4 antagonist, both inhibited the naringin-induced migration of HDPSCs. Furthermore, naringin increased osteogenic differentiation of HDPSCs and the expression of the osteogenic-related marker, alkaline phosphatase in HDPSCs. Taken together, our findings suggest that naringin may be beneficial on dental tissue or bone regeneration by increasing the biological activities of HDPSCs.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Park SH, Ye L, Love RM, Farges JC, Yumoto H. Inflammation of the dental pulp. Mediators Inflamm 2015;2015:980196. doi: 10.1155/2015/980196.
  2. Masthan KM, Sankari SL, Babu NA, Gopalakrishnan T. Mystery inside the tooth: the dental pulp stem cells. J Clin Diagn Res 2013;7:945-7. doi: 10.7860/JCDR/2013/5379.2984.
  3. Liang C, Liao L, Tian W. Stem cell-based dental pulp regeneration: insights from signaling pathways. Stem Cell Rev Rep 2021;17:1251-63. doi: 10.1007/s12015-020-10117-3.
  4. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015;9:1205-16. doi: 10.1002/term.1899.
  5. Yang Y, Trevethan M, Wang S, Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: an update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem 2022; 104:108967. doi: 10.1016/j.jnutbio.2022.108967.
  6. El-Desoky AH, Abdel-Rahman RF, Ahmed OK, El-Beltagi HS, Hattori M. Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: in vitro and in vivo evidence. Phytomedicine 2018;42:126-34. doi: 10.1016/j.phymed.2018.03.051.
  7. Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and naringenin: their mechanisms of action and the potential anticancer activities. Biomedicines 2022;10:1686. doi: 10.3390/biomedicines10071686.
  8. Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluidderived stem cells. J Tissue Eng Regen Med 2017;11:276-84. doi: 10.1002/term.1911.
  9. Wang W, Mao J, Chen Y, Zuo J, Chen L, Li Y, Gao Y, Lu Q. Naringin promotes osteogenesis and ameliorates osteoporosis development by targeting JAK2/STAT3 signalling. Clin Exp Pharmacol Physiol 2022;49:113-21. doi: 10.1111/1440-1681.13591.
  10. Lin F, Zhu Y, Hu G. Naringin promotes cellular chemokine synthesis and potentiates mesenchymal stromal cell migration via the Ras signaling pathway. Exp Ther Med 2018;16:3504-10. doi: 10.3892/etm.2018.6634.
  11. Yin L, Cheng W, Qin Z, Yu H, Yu Z, Zhong M, Sun K, Zhang W. Effects of naringin on proliferation and osteogenic differentiation of human periodontal ligament stem cells in vitro and in vivo. Stem Cells Int 2015;2015:758706. doi: 10.1155/2015/758706.
  12. Ali MR, Mustafa M, Bardsen A, Gharaei MA, Fristad I, Bletsa A. Differential responses of human dental pulp stromal cells to bioceramic materials: a comparative in vitro study. J Contemp Dent Pract 2021;22:1386-92. doi: 10.5005/jp-journals-10024-3216.
  13. Li M, Sun X, Ma L, Jin L, Zhang W, Xiao M, Yu Q. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways. Sci Rep 2017;7:40161. doi: 10.1038/srep40161.
  14. Boushell LW, Nagaoka H, Nagaoka H, Yamauchi M. Increased matrix metalloproteinase-2 and bone sialoprotein response to human coronal caries. Caries Res 2011;45:453-9. doi: 10.1159/000330601.
  15. Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC, Johnson D, Steinle JJ, Wilson MW, Morales-Tirado VM. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 2017;17:434. doi: 10.1186/s12885-017-3418-y.
  16. Huang XF, Yuan SJ, Yang C. Effects of total flavonoids from Drynaria fortunei on the proliferation and osteogenic differentiation of rat dental pulp stem cells. Mol Med Rep 2012;6:547-52. doi: 10.3892/mmr.2012.974.
  17. Preethi Soundarya S, Sanjay V, Haritha Menon A, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 2018;110:74-87. doi: 10.1016/j.ijbiomac.2017.09.014.
  18. Xie H, Lin Y, Fang F. Glycogen synthase kinase-3β inhibitor promotes the migration and osteogenic differentiation of rat dental pulp stem cells via the β -catenin/PI3K/Akt signaling pathway. J Dent Sci 2022;17:802-10. doi: 10.1016/j.jds.2021.09.035.
  19. Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 2014;8:65. doi: 10.3389/fncel.2014.00065.
  20. Jiang L, Zhu YQ, Du R, Gu YX, Xia L, Qin F, Ritchie HH. The expression and role of stromal cell-derived factor-1alphaCXCR4 axis in human dental pulp. J Endod 2008;34:939-44. doi: 10.1016/j.joen.2008.05.015.
  21. Kim DS, Kim YS, Bae WJ, Lee HJ, Chang SW, Kim WS, Kim EC. The role of SDF-1 and CXCR4 on odontoblastic differentiation in human dental pulp cells. Int Endod J 2014;47:534-41. doi: 10.1111/iej.12182.
  22. Gong QM, Quan JJ, Jiang HW, Ling JQ. Regulation of the stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp cells. J Endod 2010;36:1499-503. doi: 10.1016/j.joen.2010.05.011.
  23. Liu L, Leng S, Yue J, Lu Q, Xu W, Yi X, Huang D, Zhang L. EDTA enhances stromal cell-derived factor 1α-induced migration of dental pulp cells by up-regulating chemokine receptor 4 expression. J Endod 2019;45:599-605.e1. doi: 10.1016/j.joen.2019.01.006.
  24. Wu Y, Huang F, Zhou X, Yu S, Tang Q, Li S, Wang J, Chen L. Hypoxic preconditioning enhances dental pulp stem cell therapy for infection-caused bone destruction. Tissue Eng Part A 2016;22:1191-203. doi: 10.1089/ten.TEA.2016.0086. Erratum in: Tissue Eng Part A 2019;25:1063-4.
  25. Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N. AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 2009;75:1240-7. doi: 10.1124/mol.108.053389.
  26. Wang C, Chen W, Shen J. CXCR7 targeting and its major disease relevance. Front Pharmacol 2018;9:641. doi: 10.3389/fphar.2018.00641.
  27. Zhao Z, Ma X, Ma J, Sun X, Li F, Lv J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem Biol Interact 2018;286:45-51. doi: 10.1016/j.cbi.2018.03.002.
  28. Palosaari H, Pennington CJ, Larmas M, Edwards DR, Tjaderhane L, Salo T. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue. Eur J Oral Sci 2003;111:117-27. doi: 10.1034/j.1600-0722.2003.00026.x.
  29. Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol 2000;45:757-65. doi: 10.1016/s0003-9969(00)00052-2.
  30. Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, Di Lenarda R, Pashley DH, Breschi L. Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res 2007;86:436-40. doi: 10.1177/154405910708600509. Erratum in: J Dent Res 2007;86:792.
  31. Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 2006;85:22-32. doi: 10.1177/154405910608500104.
  32. Yamakoshi Y, Hu JC, Iwata T, Kobayashi K, Fukae M, Simmer JP. Dentin sialophosphoprotein is processed by MMP-2 and MMP-20 in vitro and in vivo. J Biol Chem 2006;281:38235-43. doi: 10.1074/jbc.M607767200.
  33. He G, George A. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem 2004;279:11649-56. doi: 10.1074/jbc.M309296200.
  34. Gajjeraman S, Narayanan K, Hao J, Qin C, George A. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem 2007;282:1193-204. doi: 10.1074/jbc.M604732200.
  35. Chaussain C, Eapen AS, Huet E, Floris C, Ravindran S, Hao J, Menashi S, George A. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell. Eur Cell Mater 2009;18:84-95. doi: 10.22203/ecm.v018a08.